
SoftwareX 14 (2021) 100684

U

r

h

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Document Towers: AMATLAB software implementing a
three-dimensional architectural paradigm for the visual exploration of
digital documents and libraries
Vlad Atanasiu ∗, Rolf Ingold
niversity of Fribourg, Department of Informatics, Bd. de Pérolles 90, 1700 Fribourg, Switzerland

a r t i c l e i n f o

Article history:
Received 12 January 2021
Received in revised form 25 February 2021
Accepted 26 February 2021

Keywords:
Digital libraries
Document structure
Visualization
Information exploration
Serendipity
Metaphors

a b s t r a c t

This article introduces the generic Document Towers paradigm, visualization, and software for visual-
izing the structure of paginated documents, based on the metaphor of documents-as-architecture.
The Document Towers visualizations resemble three-dimensional building models and represent the
physical boundaries of logical (e.g., titles, images), semantic (e.g., topics, named entities), graphical (e.g.,
typefaces, colors), and other types of information with spatial extent as a stack of rooms and floors.
The software takes as input user-supplied JSON-formatted coordinates and labels of document entities,
or extracts them itself from ALTO and InDesign IDML files. The Document Towers paradigm and
visualization enable information systems to support information behaviors other than goal-oriented
searches. Visualization encourages exploration by generating panoramic overviews and fostering
serendipitous insights, while the use of metaphors assists with comprehension of the representations
through the application of a familiar cognitive model. Document Towers visualizations also provide
access to types of information other than textual content, specifically by means of their physical
structure, which corresponds to the material, logical, semantic, and contextual aspects of documents.
Visualization renders documents transparent, making the invisible visible and facilitating analysis at a
glance and without the need for physical manipulation. Keyword searches and other language-based
interactions with documents must be clearly expressed and will return only answers to questions
asked; by contrast, visual observation is well suited to fuzzy goals and uncovering unexpected aspects
of the data.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v2020.02.15
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00009
Code Ocean compute capsule –
Legal Code License BSD-3-Clause
Code versioning system used None
Software code languages, tools, and services used MATLAB (R2020b)
Compilation requirements, operating environments & dependencies Linux, Mac, Unix, Windows
If available Link to developer documentation/manual Documentation included in software.
Support email for questions atanasiu@alum.mit.edu

∗ Corresponding author.
E-mail addresses: atanasiu@alum.mit.edu (Vlad Atanasiu),

olf.ingold@unifr.ch (Rolf Ingold).
URLs: http://waqwaq.info/ (Vlad Atanasiu),

ttps://www3.unifr.ch/inf/de/all/people/16738/0a54b (Rolf Ingold).

1. Motivation, principles and significance

‘‘Mathematics can only become truly interesting and
original when it involves the operation of seeing
something as something else.’’

[Reviel Netz]
https://doi.org/10.1016/j.softx.2021.100684
2352-7110/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



Vlad Atanasiu and Rolf Ingold SoftwareX 14 (2021) 100684

s
m
e
s
d
t
f
o
s

s
t
[
o
r
m
i
a
d
g
a
i
i
a

m
a
f
c
o
t
u
s
s
e
c
q

w
m
p
s
r
t
m
o
‘
t
d
s
t
d
o
a
t
d
f
o
s

i
o
w
f
s

Documents composed of pages are ubiquitous information
torage formats, whether in digital (e.g., PDF and Word docu-
ents) or analog form (e.g., books, articles). Massive ongoing
fforts are being made to realize the analog-to-digital conver-
ion of historical document collections (e.g., Google Books), while
igital-to-digital format conversions are also routine (e.g., Word
o PDF). Thus, the relevance of developing diverse solutions that
acilitate interactions with this type of information cannot be
verstated. The Document Towers paradigm, visualization, and
oftware introduced herein are one of these solutions.
While, typically, document content is accessed through the

emantic analysis of text and graphical objects, this informa-
ion is not always available (e.g., optical character recognition
OCR] is needed to make text in document images searchable)
r may be expensive (e.g., high-quality handwriting recognition
emains costly today). One solution, implemented in the Docu-
ent Towers software, is to exploit the information contained

n the document structure. For example, the first page of an
rticle usually features a greater number and diversity of visually
istinct entities than the subsequent pages; it also contains a
reater variety of information levels, such as title, abstract, and
uthors. In other words, the structure of information is potentially
ndicative of its informativeness. It could in fact be argued that
nformation is structure: letters and pixels create different texts
nd images depending on how they are arranged.
Natural language and numerical descriptions are other com-

on paradigms for accessing information. The visual modality
dopted by the Document Towers human–machine interface of-
ers an alternative with several advantageous characteristics, in-
luding its support for exploration, serendipitous discoveries, and
verview. These kinds of information behaviors differ from the
argeted search implicit in the concept of the text input fields
sed almost ubiquitously in Internet search engines [1–3]. Visual
earch is thus well suited to cases in which the information
ought cannot be clearly expressed in words, in which users
mploy different terminology and languages to describe the same
oncept, or in which the findings may be unexpected (as in
uality control).
The Document Towers visualization represents documents as

ireframe architectural models. The purpose of this cognitive
odel is to create a sense of familiarity for the user while com-
rehending and manipulating opaque physical objects and ab-
tract digital structures [4,5]. There is a natural material cor-
espondence between stacks of pages and buildings, and be-
ween libraries and cities; moreover, spatial and architectural
etaphors are ingrained in software and hardware terminol-
gy (e.g., ‘‘information superhighway’’, ‘‘homepage’’, ‘‘desktop’’,
‘tunnel’’, ‘‘cloud’’, and the scientific field of ‘‘Information Archi-
ecture’’) [6], and have also been used in the past for experimental
ocument representations. Examples include visualizing software
tructure as an urban landscape [7], extruding the nested struc-
ure of webpage objects [8], representing text columns in a three-
imensional space [9], rendering digital documents as look-alikes
f physical books in a virtual reality library [10], and conceptu-
lizing navigation between Internet domains as a walk through
unnels that connect various rooms [11]. Research into compact
ocument overview are addressed in the literature, e.g., in the
orm of semantically highlighted thumbnails [12], or a dashboard
f topic distribution in documents [13]. Illustrated surveys of
imilar experiments can be found in [14–16].
Fig. 1 illustrates how a three-dimensional architectural model

s obtained by extruding the bounding boxes of various objects
n a document page, thereby creating slabs that resemble rooms,
alls, or pillars. Fig. 3 depicts how the page boundaries look like

loors and the entire document like a building. Fig. 6 shows the

Fig. 1. Principle by which page entities are transformed into an architectural
model.

Two effects of representing documents as wireframe archi-
tectural models contribute to the paradigm’s effectiveness in
eliciting insights. First, the models preserve the physical structure
of paginated documents, which facilitates their analysis. Second,
the simplification of shapes to slabs helps on one hand focus on
the essential, and on the other hand spurs the imagination to
search for meanings to sibylline structures, which is the goal of a
visualization meant for exploration.

The Document Towers are first and foremost a visualization
paradigm for paginated documents, while the Document Towers
software implements this paradigm in an interactive visual in-
terface (Fig. 2, left). Its purpose is to enable the exploration of
document structures for practical applications, to aid research
into the interpretation of document structures, and to promote
the Document Towers paradigm for potential adoption in third-
party applications. A distinct functionality of the software is its
ability to read document object geometry and metadata from
selected document formats, although the software scope in this
case is not automatic analysis conducted by machines, but visual
analysis performed by humans.

The separation between generic visualization and processing
specific document formats is achieved by using as input to the
software a custom JSON-formatted intermediary file for simple
geometry and metadata description, which can be either gen-
erated from document files by the software or supplied by the
users. To produce Document Towers visualizations all is needed
are coordinates of the spatial extent of entities within documents,
while the labels adding metadata to the entities are useful, but
not indispensable. This makes the proposed method a generic
information visualization concept for paginated documents, just
like a histogram is a generic concept for representing a set of
scalars.
imilarity between a collection of documents and a cityscape.

2



Vlad Atanasiu and Rolf Ingold SoftwareX 14 (2021) 100684
Fig. 2. Document Towers representation process (left) and workflow (right).

Fig. 3. Document Towers visualizations representing the distribution of text and graphics in the same document, generated from an IDML file (left) and a PDF file
(right). (For a color version of this figure, the reader is referred to the web version of this article.)
3



Vlad Atanasiu and Rolf Ingold SoftwareX 14 (2021) 100684
Fig. 4. Measures and Ribbons. Please refer to Section 2.6 ‘‘Measurements’’ for details. (For a color version of this figure, the reader is referred to the web version of
this article.)

2. Software description

2.1. Software architecture and workflow

The software consists of a data capture and processing module,
an interactive document structure viewer, and feature measure-
ment functions. The user begins by using the software interface
to select one or more electronic document files containing coor-
dinates of document objects, and possibly also labels specifying
the object classes (Fig. 2, right). The software extracts the object
geometry and labels, then saves them to a file. This file can also
be produced by a third-party software package in cases where it
is necessary to process formats not supported by the Document
Towers software (see the software documentation for specifica-
tions). In the next step, the user selects these geometry files, after
which the software displays three-dimensional wireframes at the
specified locations, and colors them according to the labels. The
user can now interactively explore and interpret the visualization,
which can subsequently be saved for later reuse.

2.2. Programming environment

The Document Towers software is written in the MATLAB
programming language (R2020b). The software can be used in
conjunction with MathWorks’ MATLAB commercial application,
or distributed for free as a compiled standalone desktop ap-
plication running on top of the royalty-free MATLAB Runtime
Compiler [17].

The visual quality of the 3D wireframes was first tested in Java
(JavaFX), but early releases proved inadequate [18]. A JavaScript
three.js library for 3D animation and using WebGL was found
to be both graphically satisfactory and appealing due to its al-
lowing for Web delivery of the visualization [19]. However, the
exceedingly poor performance when importing geometry files
larger than 1 MB made this solution impractical. For reference,
the uncompressed ASCII file size for the geometry of a single
Tower in Fig. 3 is 343 kB (4265 objects), while the collection of
89 Document Towers visualizations in Fig. 6 is 6.7 MB (85203
objects).
4



Vlad Atanasiu and Rolf Ingold SoftwareX 14 (2021) 100684

i
a
a
e
c
s
o
w
t

2

c
a
e
p
p
t
p
e
i
o
f
w
t
a
i

2

l
g
T
t
l

l
s
A
T
t
n
d
s

m
d
m
o
w
D
a
E

o
v
i
I
b
i
o
s
t

Creating Document Towers visualizations in MATLAB resulted
n none of the graphical drawbacks of JavaFX and was reason-
bly fast: a single Tower can be generated in four seconds on
MacBook Pro 2018 (3 GHz Intel Core i9). Use of the game

ngine Unity [20] and the design software AutoCAD [21] was
ontemplated, but MATLAB has the advantage of being a scientific
oftware development environment that supports a broad range
f applications, including image processing and statistics, both of
hich are useful for extending the document analysis power of
he Document Towers software.

.3. Extracted information

The information extracted from document files comprises the
oordinates of the spatial extent of entities within the document,
long with labels defining these entities (when available). For
xample, the IDML and ALTO files discussed in the next section
rovide labels for four spatially defined basic document entities:
ages, text frames, raster images, and vector graphics. ALTO files
ypically contain a further set of labels, created ad hoc by the file
roducers, which introduce subcategories for the basic document
ntities (such as ‘‘title’’ for a text frame, ‘‘stamp’’ for a raster
mage, and color values for a vector font). The graphical interface
f the Document Towers software can be used to filter entities
or display. The Document Towers visualizations are agnostic to
hat they represent; their power depends on the richness of
he information in various document formats, the possibility of
utomatically extracting it, and the user’s ability to interpret
t [22].

.4. Data formats

The software is capable of reading the object coordinates and
abels present in XML-formatted IDML (InDesign Markup Lan-
uage) [23] and ALTO (Analyzed Layout and Text Object) [24] files.
he former is employed by Adobe InDesign, the market-dominant
ypography software used by the publishing industry for complex
ayouts, while the latter is a standard for digitization projects.

Coordinates within pages, page numbers, object types, and
abels, along with document metadata such as file names, are
aved to a file in JSON (JavaScript Object Notation) format [25].
s an example, the first line in the file describing the Document
ower in Fig. 1 is [0, 0, 0, 441, 0, 441, 666, 0, 666]: here,
he initial zero defines the object as a page, while the following
umbers are the coordinate pairs of its bounding box. Sample
ata and detailed formatting specifications are provided with the
oftware.
The geometry file is subsequently read by the visualization

odule. This hand-over mechanism allows the user to create
ocument structure libraries, split long documents, merge docu-
ents into a single Document Tower, modify labels and metadata,
r process data structure files generated using third-party soft-
are. For example, the information extracted from PDFs (Portable
ocument Format) presented in Figs. 3 and 6 is obtained through
proprietary application programming interface (API) for the

nlighter software of the Swiss company Sugarcube [26].
There may well be substantial differences in the information

btained from the various document formats; as a result, the
isualized structures can be quite distinct from each other. Tak-
ng as an example an academic book written and produced in
nDesign by the first author [27], Fig. 3 illustrates how the IDML-
ased visualization (left) emphasizes a recurrent irregular layout
n the first part of the document, resulting from the presence
f illustrations, while the Tower derived from the PDF of the
ame document (right) highlights the stark paragraph density of

Fig. 5. The authors in front of a Document Towers visualization mural.

graphics visible in the PDF are rulers, which separate text from
footnotes or table sections; in the IDML, these are defined as
paragraph parameters, not as identifiable objects.

These differences raise questions, such as that of how much
uncertainty related to document layout is present in a particular
document description file. For example, a LaTEX .tex file on its
own reveals little about the final appearance of the document,
while a PDF file is expected to provide faithful graphical repre-
sentation. Rather than considering the data format-dependency
phenomenon a limitation, it may be useful to instead interpret
differences as providing valuable insights into the specificities of
various document formats, some of which may become visible
through the Document Tower visualization paradigm. It is also
useful to consider the complementarity of document formats, and
investigate, via the Document Towers visualizations as thinking
tools, how the different information provided by these formats
might be used individually or fused. Such questions are relevant
to document engineering, archival, and forensic applications, and
the Document Towers paradigm provide a perspective distinct
from others to address these questions.

2.5. Visualization and interaction

The main document structure representation paradigm imple-
mented by the Document Towers visualization is that of three-
dimensional wireframes that utilize the architectural metaphors
of objects-as-rooms, pages-as-floors, documents-as-towers,
and libraries-as-cities. By color-coding the facade of each floor
according to specific semantic and quantitative criteria, so-called
Ribbons are obtained, which are a more space-saving representa-
tion than the Document Towers visualization (Fig. 4).

Through a graphical interface, parameters such as colors and
transparency can be set, the type of objects to display can be
selected, and the projection changed between axonometric, ele-
vation, and plan view; the user can also zoom, pan, and rotate the
Document Towers visualizations in order to move from overview
to details. Hyperlinks can be added, enabling a PDF version of the
document to be opened at desired pages in a web browser; in this
way, the Document Towers visualizations acquire a document
navigation function similar to a table of contents.

2.6. Measurements

The software provides numerical statistics on object cate-
gories, as well as colorcoded information (Ribbons) on the num-
ber of objects per page (cardinality), and on the percentage of the
he reference section at the document’s end. Many of the vector

5



Vlad Atanasiu and Rolf Ingold SoftwareX 14 (2021) 100684

a

Fig. 6. A Document Towers City visualization having lead to three insights discussed in Section 3 ‘‘Illustrative example’’.

rea of a page covered by objects (fill). Fig. 4 presents a front view
of a Document Tower from the same PDF file as in Fig. 3, in which
the facade was colorcoded on two measurements with reference
to text, vector, and raster objects. The pages corresponding to the
extreme values are shown. Page 96 is a table and has the highest
number of objects per page as extracted by the PDF analysis
algorithm, while page viii is a single raster image that covers
the entirety of the page surface, in contrast to the almost empty
page 1.

2.7. Scalability

The scalability of rendering documents as Document Tow-
ers visualizations is constrained by performance and physical
factors. The former was discussed in Section 2.2 ‘‘Programming
environment’’, while the latter derives from the limited surface
and resolution available on typical computer displays, restrict-
ing the detail and overview capacity of representations. About
3000 article-length documents such as in Fig. 6 might be shown
with reasonable legibility on the 3072 × 1920-pixels screen of
a MacBook Pro laptop. To represent more documents at higher
resolutions, it is suggested to make hard copies and display them
on walls, a technique used by graphic designers for magazines,
and architects and engineers for plans. This approach was also
adopted by the authors to compare document structures, yielding
additional benefits of persistent visualizations and more space to
accommodate a larger group of viewers (Fig. 5).

3. Illustrative example

The Document Towers visualizations shown in Fig. 6 represent
eighty-nine PDF documents in a folder ordered by filename on
one of the authors’ computers; here, the blue slabs represent the
location and extent of raster images in the digital documents.
The image exemplifies the following three benefits of visualizing
document structures. All of these are serendipitous discoveries
made by visualizing the document with the Document Tower
software.

A. Misclassification: While this collection was supposed to con-
tain only articles, the presence of a high-rising Tower reveals a
monograph among them. This misclassification would most likely
have gone unnoticed if not for its serendipitous discovery due to
visualization.

B. Search quality: The regular Document Towers visualizations
represent scanned documents, where each page is a single raster
image, while the fragmented Document Towers visualizations
represent native electronic documents, in which images cover
only a portion of pages (if present at all). For a library wishing
to offer its readers searchable digital documents, the implica-
tion is that scanned documents must be identified and the text
and logical structure extracted, which is time-consuming and
costly. Moreover, the text recognition rate from raster images
rarely yields an electronic text identical to the one in the imaged
documents, particularly in the case of noisy, historical, or hand-
written documents, which leads to suboptimal textual search
results. Visualization, by contrast, offers a quick and lightweight
means to estimate document search quality before performing
text recognition.

C. Forensics: The small Tower in the upper left corner, which
draws the eye due to its outlying location, is not an individ-
ual document, but rather represents images located outside the
visible frame of the PDF documents. Could it conceal a hidden
message?

4. Impact

The Document Towers paradigm combines document struc-
ture with an architectural metaphor. This paradigm has a poten-
tially broad range of both applications and users, and covers the
entire document lifecycle.

Its main impact pertains to the information-seeking strategy it
fosters: namely, exploration as opposed to targeted search. This
is of particular interest in rich, unstructured, and undocumented
environments, such as archives.

Document digitization and conversion, in particular, are ap-
plications likely to benefit from visual document structure rep-
resentation, as this method is cheap to implement (e.g., can be
6



Vlad Atanasiu and Rolf Ingold SoftwareX 14 (2021) 100684

a
i
t
q

d
c
c
o

c
t

5

i
o
m
t
t
t

C

W
i
t

D

c
t

A

u
F
c
g
f
S
u

R

pplied before optical character recognition) and provides rich
nsights through non-linguistic means by leveraging human pat-
ern recognition capabilities (helpful for, e.g., outlier detection in
uality control).
The Document Towers visualizations also make information in

ocuments visible without the need to open them. As such, they
ould act as document navigation aids (e.g., next to the table of
ontents in e-book readers). They might further help designers to
verview documents they are laying out.
Last but not least, Document Towers visualizations have a

ertain aesthetic appeal, which is a useful user experience fac-
or [28].

. Conclusions

The article introduced the Document Towers paradigm, visual-
zation, and software, designed to facilitate the visual exploration
f paginated document structures using an architectural cognitive
odel. Beyond the specifics of the visualization and software,

he usefulness of the work lies in the paradigm it promotes:
hat of a technological information-seeking aid complementary
o linguistic and numerical targeted search.

RediT authorship contribution statement

Vlad Atanasiu: Conceptualization, Methodology, Software,
riting – original draft, Visualization. Rolf Ingold: Conceptual-

zation, Writing – review & editing, Supervision, Funding acquisi-
ion.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The first author expresses gratitude for the support and stim-
lating discussions with Andreas Fischer of the University of
ribourg, and Jean-Luc Bloeche and Maurizio Rigamonti of Sugar-
ube. Both authors acknowledge the improvement brought by the
racious comments of the anonymous reviewers. K. F. is thanked
or proofreading. This research was supported by the Fund in
upport of Innovation of the canton of Fribourg, Switzerland,
nder grant No. 2013.03.

eferences

[1] Bates MJ. What is browsing—really? A model drawing from behavioral
science research. Inf Res 2007;12(4). URL http://www.informationr.net/ir/
12-4/paper330.html.

[2] McCay-Peet L, Toms EG. Researching Serendipity in Digital Information
Environments. San Rafael, CA: Morgan & Claypool; 2018.

[3] Fisher KE, Erdelez S, McKechnie LEF. Theories of Information Behavior.
Medford, NJ: Information Today; 2006.

[4] Norman AD. Living with Complexity. Cambridge, MA: The MIT Press; 2010.
[5] Lakoff G, Johnson M. Metaphors We Live By. Chicago, IL: University of

Chicago Press; 1980.
[6] Wertheim M. The Pearly Gates of Cyberspace: A History of Space from

Dante to the Internet. W. W. Norton: New York, NY; 1999.
[7] Alam S, Boccuzzo S, Wettel R, Dugerdil P, Gall H, Lanza M. EvoSpaces:

Multi-dimensional navigation spaces for software evolution. In: Lalanne D,
Kohlas J, editors. Human machine interaction: Research results of the MMI
program. Berlin: Spinger; 2009, p. 167–92.

[8] Mozilla developers. Firefox developer tools: 3D view [cited 2021.02.14].
2021, URL https://developer.mozilla.org/en-US/docs/Tools/3D_View.

[9] Small DL. Rethinking the Book. (Ph.D. thesis), Cambridge, MA: MediaLab,
Massachusetts Institute of Technology; 1999, No. 951.

[10] Almeida RAd, Cubaud P, Dupire J, Topol A. Interactions et métadonnées
riches pour les bibliothèques numérisées. Doc Numér 2006;9(2):83–109.
http://dx.doi.org/10.3166/dn.9.2.83-109.

[11] Selfridge P, Kirk T. COSPACE: Combining web browsing and dynamically
generated, 3D, multiuser environments. Intelligence 1999;10(1):24–32.

[12] Stoffel A, Kinnemann H, Spretke D, Keim DA. Enhancing document struc-
ture analysis using visual analytics. In: Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC), 22–26 March 2010, Sierre,
Switzerland. 2010, p. 8–12. http://dx.doi.org/10.1145/1774088.1774091.

[13] Humphreys A, Spencer C, Brown L, Loy M, Snyder R. Reimagining the
digital monograph: Design thinking to build new tools for researchers.
J Electron Publ 2018;21(1). http://dx.doi.org/10.3998/3336451.0021.102.

[14] Dodge M, Kitchin R. Atlas of Cyberspace. Harlow: Addison-Wesley; 2001.
[15] Card S. Information Visualization. In: Sears A, Jacko JA, editors. The

Human–Computer Interaction Handbook: Fundamentals, Evolving Tech-
nologies and Emerging Applications. 2nd ed.. New York, NY: Lawrence
Erlbaum; 2014, p. 509–43.

[16] Fang X, Jacquemin C, Vernier F, Luo B. A survey of 3D document corpus
visualization. Inf Technol J 2009;8(1):1–15.

[17] MathWorks. Matlab Compiler [cited 2021.01.03]. 2021, URL https://ch.
mathworks.com/products/compiler.html.

[18] Oracle. JavaFX [cited 2021.01.03]. 2021, URL https://docs.oracle.com/javase/
8/javase-clienttechnologies.htm.

[19] Threejs. JavaScript 3D library [cited 2021.01.03]. 2021, URL https://threejs.
org.

[20] Unity. Unity: Real-Time Development Platform [cited 2021.01.03]. 2021,
URL https://unity.com.

[21] AutoDesk. AutoCAD [cited 2021.01.03]. 2021, URL https://www.autodesk.
com.

[22] Ingold R, Bloechle J-L, Rigamonti M. Reverse-engineering of PDF files. In:
Chaudhuri BB, Parui SK, editors. Advances in Digital Document Processing
and Retrieval. Singapore: World Scientific; 2014, p. 249–85.

[23] Systems A. IDML file format specification, version 8.0. San Jose, CA:
Adobe Systems; 2006, URL https://www.adobe.com/content/dam/acom/en/
devnet/indesign/sdk/cs6/idml/idml-specification.pdf.

[24] The Library of Congress. ALTO: Technical Metadata for Layout and Text
Objects [cited 2021.01.03]. 2021, https://www.loc.gov/standards/alto/.

[25] JSONorg. Introducing JSON [cited 2021.01.03]. 2021, URL https://www.json.
org/json-en.html.

[26] Sugarcube. Home page [cited 2021.01.03]. 2021, URL https://www.
sugarcube.ch.

[27] Atanasiu V. Expert Bytes: Computer Expertise in Forensic Documents –
Players, Needs, Resources and Pitfalls. Boca Raton, FL: CRC Press; 2014,
p. 208, URL https://www.amazon.com/Expert-Bytes-Expertise-Documents-
Resources-ebook/dp/B00OD404IM/.

[28] Turner P. A Psychology of User Experience: Involvement, Affect and
Aesthetics. Cham: Springer; 2017.
7


