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ABSTRACT This article introduces structural information potential (SIP), ameasure of information based on
the potential of structures to be informative about their content. An example of this concept is the clustered
appearance that typically characterizes the first page of scientific articles, which summarizes the article’s
contents and provides additional data, yielding potentially the largest andmost diverse amount of information
from a single page in the shortest time with the least effort. This characteristic makes SIP particularly well-
adapted to triage tasks (i.e., rapid decision-making under conditions of uncertainty and limited resources),
an application illustrated by means of a case study on classifying document images. The SIP method consists
in unifying the Shannon entropy, the Fourier transform, the fractal dimension, and the golden ratio into a
single equation and several algorithmic components. While the application domain is document images, the
concept has generic character. The method results in a mathematically and perceptually coherent pattern
space, characterized by continuous transition between uniform, clustered, and regular configurations, and
corresponding to a structural information potential with a well-defined maximum. The maximum SIP leads
to the identification of shapes and patterns with minimal structural redundancy, termed ‘‘fluorescent objects’’
as a complement to regular graphs and the Platonic solids.

INDEX TERMS Information theory, structural entropy, spectral entropy, Fourier transform, fractals, graph
theory, golden ratio, pattern analysis, image classification, document analysis, layout analysis, document
triage, digital libraries.

Form is the visible shape of content.
— Ben Shahn

I. INTRODUCTION
This article introduces a new measure of information, the
structural information potential (SIP). SIP defines informa-
tion as the potential of structures to be informative about their
nature and utility. A readily available example is the clustered
appearance typical of the first page of scientific articles,
such as this one; these pages summarize the article’s content
and provide additional metadata, thus yielding potentially
the largest and most diverse amount of information from a
single page in the shortest time with the least effort. The
optimality of the data transmission rate, as influenced by
the structure of the communication channel represented by
documents, is also a critical factor in document triage, the
main application studied in this article to evaluate the SIP
measurement method.
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FIGURE 1. Demonstration of the structural information potential
principle: While the above codes are identical both content-wise and
functionally, the structured layout of code 2 facilitates faster analysis by
programmers, enabling them to notice at a glance that there are
potentially seven instructions and two nested loops.

In the document domain, the above observation is sup-
ported by compelling empirical evidence from the practice
[1]–[4], theory [5]–[7], psychology [8]–[10], and his-
tory [11], [12] of document design (these references are
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a small representative sample from a substantially larger
bibliography). For example, much of the effort invested in
microtypography [13], [14] (already an aesthetic quality and
commercial factor in the early days of typography) concerns
the spacing of characters (kerning) and words (justification),
character ligatures, hyphenation rules (ladders), trailing para-
graph lines (widows and orphans), and so on, for the purpose
of producing visually homogeneous pages of text (a char-
acteristic denoted as ‘‘page gray’’) [15], [16]. The principal
motivations for this painstaking effort are the desire to keep
semantic units visually grouped, as well as to prevent vertical
streaks (rivers) from emerging due to chance alignments
of spaces or similar letters, drawing the reader’s attention
towards spurious shapes devoid of content-related informa-
tion (Fig. 2) [17]. Conversely, an intentionally clustered page
pattern is the result of graphic designers arranging distinct
informational units so as to augment hierarchical and typo-
logical distinctiveness; the goal is to improve legibility, speed
up access to information, and guide the reader’s gaze with
minimal interference. This strategy for written communica-
tion is a product of evolution, a centuries-long shift away from
homogeneous layouts driven by the increasing availability
of written information. Clustered patterns can also emerge
as a natural part of the document life-cycle; these may be
introduced in the post-production stage either intentionally
(e.g., by layers of annotations) or accidentally (e.g., due to
physical degradation). In the absence of specific search goals
or prior knowledge about the content, the most informative
documents are those with clustered patterns.

It is possible to generalize beyond documents, given
that uniform and regular signals, images, objects, and
events are in general less informative than structured enti-
ties. The paradigm resulting from these insights postu-
lates a correspondence between informativeness, structure,
a uniform–clustered–regular pattern continuum, scale-space
filling, and structural redundancy. This article accordingly
aims to devise a quantitative pattern description method for
ordering patterns along said continuum, and further develops
a conceptual framework to aid in identifying structures with
minimal redundancy.

What this approach cannot provide is an estimation of
information potential in the absence of structure, or a seman-
tic content analysis. SIP is no substitute for text recognition
and visual scene interpretation. Instead, its purpose is to char-
acterize information at the level of structural organization.

Great strides in characterizing structural informativeness
have been made in various scientific fields. However, the
application of the proposed solutions to the task of classifying
images, particularly text-based document images, has been
found to be insufficient, as no prior approach has been able
to satisfy both mathematical and perceptual desiderata. The
present article substantiates this claim and presents a solution.

In essence, the proposed method characterizes a distribu-
tion in the scale-space domain with respect to the degree of
redundancy. This characterization is achieved by unifying a
number of classical concepts from the fields of information

FIGURE 2. Example of spurious information emerging from a salient
visual structure, and its detrimental effect. — Left: The smooth flow of
reading this text is perturbed due to the reader’s attention being
reflexively diverted towards three asemantical structures resulting from
chance diagonal alignments of white interword spaces (a typographical
‘‘river’’), commas (an ‘‘island’’), and the character q (a ‘‘ridge’’). — Bottom:
The perceptual effect is increased when squinting (here, simulated via
Gaussian blur), which acts as a low-pass filter that makes the river into a
salient structure in the visual field (a structure that is also large and has a
different orientation than the text lines). — Right: The artifacts in the
original document are removed by creating a facsimile where the spacing
has been carefully adjusted to make the distribution of ink more
homogeneous overall (typeset in Adobe InDesign). — Top: The SIP
measure correctly reflects in a quantitative manner the observed
difference in perceptual homogeneity between the ‘‘noisy’’ original
(0.2703 dSIP) and the artifact-free facsimile (0.5477 dSIP). However, the
lower dSIP value also suggests a higher structural information potential,
which from the point of view of the text content is an illusion created by
the typographical artifacts. Since these artifacts are structures absent
from the facsimile, the original document is indeed richer in information,
but of a kind other than linguistic. This information is, for example, useful
for evaluating the typographical quality of the document and the
evolution of this quality across time and space (accordingly, it may be
valuable to e.g. historians and antique dealers). In this respect, the high
prices of ‘‘incunabula’’ books published by famous 15th century printers,
such as Aldus Manutius of Venice, are in part due to the high
typographical quality of their products, including a remarkably even page
‘‘gray’’ that remains a model of exquisite quality even today. The role of
this historical note is to explain through concrete examples the relevance
of SIP for a broad range of applications. — Credits: Baron de Zur-Lauben,
Mémoires et letters de Henri Duc de Rohan, Sur la Guerre de la Valteline,
Geneva & Paris: Vincent, 1758, vol. 1, p. lxxxvii.

theory (Shannon entropy), pattern analysis (Mandelbrot’s
fractals), signal processing (the Fourier transform), combi-
natorics (the golden ratio), and graph theory (the chromatic
concept) into a single analytic formula and several algorith-
mic components.

The application domain of the method is restricted in this
article to images, more specifically to text-based document
images. Given the generic nature of some of the core con-
cepts, the concluding section considers its application to other
media, such as video and three-dimensional data.

The relevance of the present article stems from the status
of information measurement as a fundamental theoretical and
practical issue across a broad range of scientific and technical
fields. Its foremost contribution consists of a practical method
to measure informativeness from structure, for application
to images and possibly other data types. The elaboration of
the pattern phase space and the identification of fundamental
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shapes with minimal structural redundancy are further theo-
retical contributions. Finally, a survey of the quantification of
irregularity links various fields, and places this research in a
wider scientific perspective.

This article demonstrates a practical application of SIP
to document triage via a real-life case study. The task in
question is a type of classification similar to triage in emer-
gencymedicine, defined as rapid decision-making for critical
matters under conditions of uncertainty and with limited
resources. While triage cannot yield optimal solutions due
to the constraints under which it operates, it is a useful and
sometimes necessary step before more sophisticated proce-
dures (such as semantic document analysis) are implemented.
The proposed method fulfills the task in an explainable way,
with reduced algorithmic complexity and assumptions.

Section I, ‘‘Introduction’’, has acquainted the reader with
the concept of SIP and some of its empirical basis. Section II,
‘‘Related work’’, presents the advantageous and limiting
factors of major existing approaches to information mea-
surement, going on to explain the need for a new method
while introducing elements used in the proposed method.
Section III, ‘‘Method’’, is the theoretical core of the article,
in which the analytical formula and algorithmic components
of the SIP measurement method are described and justi-
fied; the design of structures with minimal redundancy is
also discussed. Section IV, ‘‘Experiments’’, is devoted to
the quantitative and qualitative evaluation of the proposed
method through a case study in document triage, as well
as to providing the exemplary discussion of a few other
applications. Section V, ‘‘Discussion’’, concerns technical
matters and future work. Finally, Section VI, ‘‘Conclusions’’,
summarizes the theoretical and practical significance of the
proposed method and its applications.

II. RELATED WORK
A. PATTERN IRREGULARITY
1) INFORMATION THEORY
Information theory has a central place among the domains
relating pattern structures to informativeness. It is rooted in
the Shannon entropy, H [18], which defines the amount of
information, uncertainty, and choice, and quantifies it via the
well-known equation H = −

∑n
k = 1 pk log2 pk , where pk

is the occurrence probability of data class k from among n
classes [19, pp. 393]. The normalized variant is given by the
relative entropy,Hr = H/Hmax ,Hmax = log2(n) [19, p. 398].
This formulation produces a data distribution in which the
extrema are on one hand the uniform distribution of values
over all possible classes (Hr = 1), and on the other hand the
concentration of values into a single class (Hr = 0). In the
context of grayscale images, these correspond respectively to
a uniformly monochromatic image and an image in which
the number of present gray-level values equals the number
of pixels. The application domain of this equation is nominal
data, i.e., independent categories, such as the values of a fair
dice. Therefore, this equation (and many of its variants) is not
directly applicable to ordinal and structural data; given that

the measure is independent of the configuration of sampling
points (such as pixels in an image), it is not suitable for the
goal pursued in this article.

Nevertheless, it is worth mentioning some notable entropy
definitions as a way to exemplify the extent and vitality
of research in this field, to point to research directions,
to underscore the interdisciplinary character, and to identify
ideas related to this article’s topic. The Rényi and Tsallis
entropies are generalizations of the Shannon entropy and
define a parametrized family of entropies [20], [21]. Aiming
at quantifying biodiversity, the field of ecology has con-
tributed to the research on entropy with rich theories of
diversity, as well as with formalisms, such as allowing for
weighted probability classes, which express the similarity
between species [22], [23]. From the field of nuclear physics
comes the strength of structure [24, pp. 137–144] defined in
1939 by Satosi Watanabe (then a student of Werner Heisen-
berg) as J , the difference between the sum of entropies of u
parts of a system, each containing vu entities, and the entropy
of the whole, containing n =

∑u
i= 1 vui :

J = −
u∑

i= 1

v∑
j= 1

pij log2 pij +
n∑

k = 1

pk log2 pk . (1)

This method has been utilized in document layout segmen-
tation [25]. The inclusion of both parts and the whole in the
characterization of structures is also important to the concepts
addressed this article.
Approximate entropy (ApEn) is a measure of ‘‘irregu-

larity’’ created to extend information entropy to structural
data [26]–[28]. ApEn has been refined through many para-
metric [29], [30] and algorithmic variants [31]–[33] and com-
pares well with other methods [34], [35]. From its inception
onwards, it has been successfully applied to various biosig-
nals [34], [35], and later to a broad range of other applications
such as online signature verification [36], speaker recogni-
tion [37], radar jamming [38], earthquake prediction [39],
and cryptography [28], [40]. In brief, ApEn is obtained by
sliding a signal over itself, measuring the distance between
the two within a window of given length according to the
difference between the maxima, and computing a logarith-
mic average; this process is carried out for two different
window lengths and the irregularity index is obtained as the
difference between these partial results. For a finite discrete
signal, there exists both a lower and upper bound; this is zero
for perfectly periodic patterns, with higher values indicat-
ing greater irregularity. One very interesting aspect of this
measure is that it is possible to compute number sequences
with maximal irregularity (this upper bound is neither white
noise nor a deterministic fractal) [41], [42]. The method
may be extended to the analysis of images using vectorized
bidimensional windows [43], [44]. This approach, in addition
to improved parametrization [29], was used in this article
to process document images. The results are discussed in
Section IV, ‘‘Experiments’’, and illustrated in Fig. 15. While
clustered documents are classified at one end of the spectrum,
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FIGURE 3. Sample fractal with dimension D = 1.5 represented in the
space/time and frequency domains. The signal was synthesized from the
magnitude and phase via inverse Fourier transform. The signal has the
characteristics of 1/f noise, a power law distribution visible in the shape
of the magnitude and confirmed by the linearity of the power spectrum
on log–log scales; the phase is random. Only half of the symmetrical
spectrum is displayed. The DC is set to zero, hence the zero mean
amplitude of the signal.

as desired, a mix of uniform (predominately empty) and
homogeneous (predominately text) patterns appear at the
other end, which is undesirable, since these patterns differ
both in terms of appearance and information potential. This
counter-intuitive behavior has been explained in the past by
the observation that ApEn is a measure of irregularity rather
than complexity [45].

2) FRACTALS
Fractals [46] are deterministic or stochastic self-similar or
self-affine mathematical objects with an interesting property
from the point of view of information theory: their clustered
structure, which results from their infinite filling of the scale-
space, maximizes their information potential. This is one of
the reasons why fractal-like structures abound in nature; for
example, the energetic intake of plants is optimized via the
organization of branches and leaves around stems according
to a power law [47], [48].

The dimension of a fractal is a fractional value,D, bounded
by the fractal’s topological and Euclidean dimensions, DT <
D ≤ DE . E.g., 1 < D ≤ 2 for signals, and 2 < D ≤ 3 for
images. One of the most reliable methods for determining the
fractal dimension uses spectral analysis and defines it as the
slope, β < 0, of the linear fit of the log-power spectrum
vs log-frequency: D = (c + β)/2, where c = 6 for an
image, and c = 4 for a signal [49], [50, pp. 54, 97–114].
Two requirements must be satisfied if the measured entity is
to be deemed a fractal: namely, the phase must be uniformly
random [49, pp. 99] and the power spectrum must follow a

power law, f α , assuming α = β [51]–[53] (Fig. 3). By def-
inition, this is not the case for non-fractal structures that are
nevertheless clustered, and even less so for other pattern types
along the uniform–clustered–regular continuum. The use of
the fractal dimensions is therefore not appropriate for use in
characterizing patterns of such a broad spectrum. However,
the concept of fractality does provide a useful framework for
thinking about SIP, especially as concerns its maximal value.

3) SPECTRAL ANALYSIS
Spectral analysis is useful for the characterization of clus-
teredness. This is because, unlike spatial entropy, the fre-
quency domain captures spatial organization in a compact
manner that is amenable to mathematical manipulation, and
also captures scale variation (in a similar way to the fractals).
Two popular spectral analysis methods are spectral entropy
and spectral flatness.
Spectral entropy, Hs, is [54] defined as the Shannon

entropy of the probabilities, P, associated with the frequency
components of the power spectrum, S, given by the discrete
Fourier transform, F , of the data, X , of length n:

S=|F(X )|2, P=S/
n∑

i= 1

Si, Hs=−
n∑

i= 1

Pi log2 Pi. (2)

Variations of the definition include obtaining the power spec-
trum from the discrete cosine transform or by way of auto-
correlation, along with using entropies other than Shannon’s.
Understanding the properties of these analytical expressions
so as to be able to thoroughly explain their effects on empiri-
cal data remains an active research field [55]. This is espe-
cially critical for the analysis of biomedical data, a major
application domain of spectral entropy [56]–[58], where it
is used in particular for the clinical interpretation of EEG
signals (e.g., for monitoring depth of patient sedation during
anesthesia [59]). Audio signals analysis (e.g., urban sound-
scape classification [60], dolphin whistle segmentation [61],
abnormal milling sounds detection [62]) and speech anal-
ysis (e.g., speaker identification [63], noise quality assess-
ment [64]) are other common application domains. Spectral
entropy has been less frequently applied in image processing,
but is used for image quality assessment [65], scene saliency
analysis [66], and camera focus estimation [67]. The common
goal is the need to distinguish between regular and irregular
patterns, where the latter are usually of interest, a task for
which spectral entropy has been found useful. The problem
remains that ‘‘irregularity’’ has many possible formal defi-
nitions, and means different things for different data types,
tasks, and contexts; moreover, the spectral entropy equation
has its own peculiar effects on the data, with the interaction
between the two not always being well understood. When
applied to image classification, for example, it results in a
mix of homogeneous and uniform patterns (see Section IV-A,
‘‘Comparison Of Methods’’).
Spectral flatness, or SF [68]–[70, pp. 112–115], is a widely

used measure of signal structuredness [71]–[73] (e.g., as an
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audio descriptor in theMPEG-4 file format [74]). It is defined
as the ratio of the geometric and arithmetic mean of a signal’s
power spectrum, S, taken over its n frequency components:

SF =
(
∏n

i= 1 Si)
1
n

1
n

∑n
i= 1 Si

=
exp ( 1n

∑n
i= 1 log2 Si)

1
n

∑n
i= 1 Si

. (3)

Its principal utility comes from the bounds of the expression
being zero for an impulse and one for a uniform distribution
in the frequency domain, which correspond in the spatial
domain to a regular signal and a impulse, respectively. SF
relates to SIP in that both have the same bounds. However,
just like spectral entropy, the spectral flatness also results in a
perceptually unsatisfactory classification of images (Fig. 15).
Point set analysis and spatial statistics are concerned with

the characterization of the distribution of point-like objects
and events in space [75]–[77], while the related field of
discrepancy theory deals specifically with characterizing the
irregularities of distribution [78], [79]. Geographical infor-
mation systems, ecology, astrophysics, and material science
are among the typical application domains. We will herein
briefly focus on the latter, as it bears a direct relation to both
the topic and methods of the present article. Based on the
empirical observation of the structure of physical matter, the
continuous pattern space extending from uniform to clustered
to homogeneous has been identified as a useful classification
concept in material science to characterize such properties as
surface roughness and particle dispersion. Much effort has
therefore been invested in quantifying these patterns, with
some of the classical methods being based on the nearest-
neighbor distribution, morphological operations (dilation fol-
lowed by counting), and Dirichlet tessellation [80]. To date,
some of the best-performing approaches rely on spectral
fractal analysis, using variations of the methods described in
the preceding paragraphs [81] [82, pp. 81–98] [49, p. 108].
The utility of the fractal paradigm has however been called
into question by practitioners on practical grounds, due to the
difficulty of measuring fractality, as well as on theoretical
grounds pertaining to its appropriateness as a model of the
observed data [83] [49, p. 109]. In summary, we note that
spectral analysis is a powerful method of characterizing struc-
tures, that better methods are required, and that methods and
data must be compatible.

4) GRAPH THEORY
Graph theory can be applied to model discrete patterns, such
as the individual pixels of digital document images, as well
as the visual and logical entities of document layouts [84].
A dynamic sub-field studies irregular or color graphs, whose
properties derive from the value of their edges; for exam-
ple, a rainbow graph is one with distinct edge values [85],
[86]. The topic relates to this article not only because of its
focus on pattern irregularity (as opposed to regular struc-
tures, such as the Platonic regular bodies), but also because
it deals with determining maximal irregularity, which the
approaches reviewed above have yet to achieve. After an

extensive literature survey (see below), however, it was not
possible to find previous work on maximal irregularity appli-
cable to patterns such as document images, even for basic
shapes (such as the triangle). Furthermore, another well-
known practical element makes the graph theory approach
to pattern classification problematic: the degree of computa-
tional complexity for data with millions of sampling points,
such as document images, creates high computational costs,
especially in comparison with other methods such as spectral
analysis.
Survey — We commence by stating here that our goal is

the study of the irregularity of continuous chromatic graphs,
and then proceed by commenting on the aesthetic dimension
of this mathematical research, which also serves to introduce
the notions vehiculated by the terminology. We next expose
the historical origins of chromatic graph theory [87] and the
interdisciplinary strands from which the modern research on
irregular graphs emerged; finally, we conclude by discussing
some particularities of our research in respect to graph
theory.

There exists a little theorem that all it says is: ‘‘No graph
is irregular’’ [88, p. 25] [89, p. 24] [85, pp. 36–37]. What it
means is that there exists no graph with two or more vertices
for which the vertices have distinct numbers of adjoining
edges (i.e. distinct degrees). The simplicity of this state-
ment is exquisite, moreover, and perhaps unsurprisingly, its
corollary—that every graph with two or more vertices has at
least two vertices with the same degree—has been voted one
of the twenty most beautiful theorems of all time [88], [90],
[91, p. 25]. Even the field of chromatic graph theory [92]
to which these two theorems belong is not bereft of meta-
mathematical charms, which exude from the colorful termi-
nology employed to designate various types of graphs. For
illustrative purposes, the author composed out of graphical
terms the following pangram (a kind of linguistic color graph,
in which all letters of the alphabet must appear): ‘‘Graph
Euler cycles over the rainbow to join the flower snarks in a
zero-vertex quasi-bramble.’’

The question has been asked as to whether it is possible to
color a cartographic map with no less than four colors, such
that no two adjacent countries have the same color. In the
form of this Four-Color Problem, graph coloring famously
made its public debut on the 23th of October 1852 as an
intriguing mapmaking problem among British mathemati-
cians, albeit in the absence of any specific request from Her
Majesty’s Ordnance Survey [93, pp. 1–26]. Its impact would
be profound, with ‘‘many of the concepts, theorems, and
problems of Graph Theory’’ being said to ‘‘lie in the shadows
of the Four-Color Problem’’ [93, pp. 2]. The study of graph
irregularity adds new layers to the already consequential
applications of coloring (e.g., timetabling, sequencing, and
scheduling [94, p. xv]), such as drug design [95, p. 600]
and secure intelligence andmilitary communication networks
[93, p. 76] [94, p. v–vi]. The topic remains, however, outside
of the mainstream: in a hefty 1633-pages handbook on graph
theory published in 2014 the word ‘‘irregular’’ occurs only
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once [96, p. 1032], and not at all in many other books of its
kind.

A series of fundamental problems in combinatorial geom-
etry and geometric graph theory were published in the 1930s
and 1940s, dealing with the number of distinct colors that
color the plane in such a way that no two blocks of the
same color are at unit distance [94], [97]–[100]. The research
grew around what became known as the Hadwiger–Nelson
problem of the chromatic number of the plane, providing
nourishing theoretical ground for the later development of
chromatic graph theory and graph irregularity. The earliest
trace of irregular graphs identified by this author dates back
to Germany during the Second World War [101, p. 76–77].
The concept later resurfaced independently in the late 1980s
in the work of the American-Iranian mathematician Yousef
Alavi, andwas elaborated by his colleagues atWesternMichi-
gan University, including Paul Erdős himself [102, p. 235].
Their approach to the problem is both astute and uninten-
tionally revealing about the nature of mathematics. Rather
than asking ‘‘what is an irregular graph?’’, their question is
‘‘what could an irregular graph be?’’, or in the slightly more
normative verbatim: ‘‘How should one define an irregular
graph?’’ (emphasis added). They followed up by stating their
expectations: ‘‘In research, the goal is not only to come up
with a definition that seems natural but to arrive at a class
of graphs with interesting, and perhaps even some surprising,
properties.’’ [85, p. 39]. These propositions seem to advance
the mutually exclusive views of mathematics as an activity
of invention (the ludic and aesthetic motivations are explicit),
and as one of discovery, in line with Erdős’ concept of an
immanent Book of mathematical proofs (‘‘Mathematics is
there.’’ [103], [104, p. 27]). In the end, their answer is a
multiplicity of definitions of graph irregularity, with various
degrees of ‘‘interestingness’’ and ‘‘surprise’’. One of the
researchers, Gary Chartrand, would subsequently coin the
term ‘‘rainbow graph’’ [93], [105], [106], labor extensively in
this research field [89], [105], [107], [108], popularize graph
irregularity [88], and point to its practical usefulness [93].

In Yugoslavia, meanwhile, members of the Zagreb
Mathematical Chemistry Group developed measures of
molecular complexity based on their own indices of graph
irregularity, the Zagreb indices, which remain a mathematical
staple among chemists [109]–[113]. Only in the late 1990s
did the three research strands converge [114]–[119, p. 45];
after this point, the focus begins to shift towards special
topics, such as determining the maximal and minimal irreg-
ularity bounds [114], [120], [121], local versus global irreg-
ularity [122], irregular graph assignments [123], and many
more [124].

The measure explored by this author differs in an essential
way from previous graph irregularity concepts. The Zagreb
indices are variously the sum of the squared vertices degrees,
the sum of products of adjacent vertices degrees, or the
sum of absolute differences of adjacent vertices degrees.
In other words, they represent the valence of entities, and
are therefore suited to applications in chemistry, especially

given the prevalence of irregular molecular graphs of interest
to chemists [118, p. 222]. The rainbow measure is given by
the number of distinct colors in a graph or along specific
paths, which is appropriate for routing problems [107], [125],
[126]. In both cases the actual distances between vertices
are disregarded and the graph’s topology is one of distance-
less connections. There are instances, however, where edges
represent not discrete label classes, but continuous distance
magnitudes, notably in pattern and shape analysis. This is the
case and particularity of the research presented in this article.

Note: Graphs embedded in the Euclidean space are geo-
metric graphs, those with other topologies are topological
graphs [99, p. 465], and both are distance graphs
[100, pp. 429–430]. Graphs optionally embedded in a
space and with values attached to the edges are chromatic
graphs [87]. Colors may represent both continuous values
and categories. We will say therefore that we study the
ir|regularity of continuous chromatic graphs.

5) OTHER FIELDS
For the sake of completeness, it is worth mentioning other
important fields that deal with irregularity (in the graph theo-
retical sense) and redundancy (in the information theoretical
sense): combinatorics (particularly combinatorial geometry)
[46], [127, pp. 78–81], packing [128], tiling [129], tessella-
tion [130], coding [131], [132], and randomness [133]–[136].
Details — Irregularity can be conceptualized from many

different perspectives. In its simplest form, line segmentation,
it can be approached from the points of view of graph theory,
point spread, and combinatorics. It is indeed an old problem
of combinatorial geometry [137], counting among its earliest
investigators the Polish mathematician Wacław Sierpiński
(1882–1969; cryptanalyst during the First World War and
later father of the eponymous ‘‘gasket’’ and ‘‘carpet’’ frac-
tals [138, pp. 78–81]) and his Swiss-Russian mentee Sophie
Piccard (1904–1990; author of a monograph on collinear
point sets [127], [139], [140]). The combinatorial aspects of
point sets were also a long-standing interest of Paul Erddős
[141]–[145]. The absence of mentions of maximal dissimilar-
ity in his publications [146], [147] leaves open the possibility
that ‘‘the prince of problem solvers and the absolute monarch
of problem posers’’ [148, p. 64] may have considered the
topic a pleasant surprise, worthy of The Book, the imaginary
object where all mathematical proofs are kept.

In the fields of tessellation and tiling—of interest to com-
puter graphics, surface modeling, and material sciences, for
example—there is a tangential interest in the irregularity of
these planar graphs, albeit typically with the aim of suppress-
ing it so as to achieve maximal regularity [129], [130].
Discrepancy theory is another field that appeared an aus-

picious match with the search for a model of pattern irreg-
ularity, considering its generic framing as ‘‘a measure of
the deviation of a point set from a uniform distribution’’
[149], [150] [78, pp. 1–3]. With roots in the 19th and
early 20th centuries, the mathematical theory of discrep-
ancy has experienced an increase in research interest over
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the last decades (it has its own conferences and jour-
nal [151]) thanks its many links to other areas of mathematics
(e.g. number theory, graph theory, and Ramsey theory),
as well as the development of instruments fundamental to
computer science (such as for numerical integration, Monte
Carlo simulations, or randomization), which find applica-
tions in computational physics, computer graphics, math-
ematical finance, and cryptography, among many others
[152, pp. xi–xiv] [78, pp. vii–viii, 22–35] [153, p. 1]. There
exist a host of methods for computing discrepancy, includ-
ing utilizing spectral analysis, be it the Fourier or the Haar
transform [79, pp. 621–678] [78, pp. 213–240]. For practical
reasons related to ease of computability, the most widely
used method is the corner method or L2-discrepancy, which
is based on the number of points falling within rectan-
gles anchored at each of these points and the bounding
box of all points (for details see [78, pp. 2–3, 10, 12–16]
[79, pp. 623–624]). Unfortunately, the pattern spectrum
defined by the discrepancy measure differs from the per-
ceptual spectrum uniform–clustered–regular targeted in this
article and defined by the structural information potential.
For example, maximum regularity in the sense of discrep-
ancy is not a pattern of equally spaced points (a triangu-
lar lattice), as for SIP, but rather one with inhomogeneous
density [79, p. 3].

Given the importance of the golden ratio and the most
irregular triangle for the structural information poten-
tial, it was anticipated that some references would also
be found in the plethoric literature on the golden ratio
[154]–[157] and triangle geometry [158]–[161], both of
which also bear some relevance to graph theory. One tan-
talizing possible avenue that might lead to the discov-
ery of new mathematical visions is that of looking into
cultures with limited global contact, such as pre-modern
Japan, when the distinctive sangaku geometry was devel-
oped in temples [162]. This search, however, was less than
fruitful.

The one domain that is almost pathologically fascinated
by structural irregularity is that of the arts and architecture
(Fig. 4). East Asian calligraphy, for example, is theoretically
grounded in a spectrum extending from almost mechanical
regularity to highly irregular brush patterns, while contem-
porary Western typography is built on the visual tension
between homogeneous and hierarchical layouts. Even the
movement of people within movie frames may be analyzed
in terms of dynamic changes in graph irregularity, as a means
of expressing meaning and emotion (the sleek geometrical
compositions of Michelangelo Antonioni’s films are good
examples). Architecture makes irregularity concrete, such
as in the fractal geometry of Islamic muqarnas (stalactite-
like wall decorations) and the irregular volumes of the villas
designed a century ago by Ludwig Wittgenstein and Le Cor-
busier (the creator of the golden ratio-basedModulor building
module), and nowadays with the aid of computers by Zaha
Hadid and Frank Gehry.

FIGURE 4. A photographic study of natural irregularity, in which a visual
framing is found such that the pairwise length between the three rocks,
along with their size differences, is maximized. The theme is reminiscent
of similar experiments related to the aesthetics of perspective conducted
by the American photographer Ansel Adams, as well as the spatial
organization of traditional Japanese gardens. — Credits: Vlad Atanasiu,
2016, Golden Gate Bridge, San Francisco.

6) MACHINE LEARNING
This section addresses the possibility of using machine learn-
ing for classifying documents on the uniform–clustered–
regular pattern spectrum and determining graphs with
minimal redundancy.
Classification — If the goal is to solve the classification

problem at hand, rather than to use a specific method to
solve it, then machine learning is not necessary since we
have already identified a solution that does not require learn-
ing. Machine learning may however be useful if it could
demonstrate certain advantages over the classical approach.
The author searched, but could not find a suitable solution
of this kind; on the contrary, a number of issues were instead
identified that have the potential to diminish the classification
quality and complicate the solving process.

The first step of learning—constituting a representative
dataset—is already problematic. Since the concept of struc-
tural information potential (SIP) is applicable to any kind of
pattern (e.g., time series, images, movies, three-dimensional
objects, and social networks), in any dimension, the typolog-
ical diversity and size of the training and testing dataset is
at the limit of practicality. Even when restricting ourselves
to the domain of documents, there is a significant diversity
of document types, including types of noise, which represent
real possible impediments to knowledge generalization.

The second learning step—producing the groundtruth—is
expensive and possibly suboptimal. It is expensive because
the classification examples to be emulated by the machine
must be generated by humans; this will result in small dataset
sizes, which may reduce the learning quality. Additionally,
the machine would be trained on human behavior, but phys-
ical and perceptual pattern measurement are not identical.
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Moreover, the influence of perceptual variability across a
wide range of human factors (e.g., age, gender, culture, moti-
vation, human–machine interfaces) would need to be assessed
and accounted for.
Minimal redundancy — The contribution of this article is

not only a practical method of pattern classification, but also a
theoretical work on defining minimal structural redundancy.
Of course, emulation and trial-and-error are fundamental
learning methods; however, there were no preexisting exam-
ples to emulate in the minimal redundancy definition pro-
cess, nor a set of reward-and-penalty criteria to use. Instead,
the author developed a rational argument about what ought
to be a solution that is both mathematically provable and
useful in practice. It was through a cognitive argumentation
process, rather than learning, that it was possible to define
the SIP value with maximal information potential, which is
an important component of the SIP theory, the SIP value
with maximal information potential, which is an important
component of the SIP theory, the SIP measurement method,
and the uniform–clustered–regular pattern spectrum.

7) CONCLUSIONS
As a concluding remark, it can be stated that a common
goal of the reviewed perspectives is the characterization of
structuredness, as distinct from uniformity, regularity, and
randomness, and under the moniker ‘‘information,’’ as a
proxy for the utility that can be derived from pattern anal-
ysis. The goal is thus doubly defined in terms of methods
and applications. The review has highlighted how a thor-
ough understanding of the empirical application domain sup-
ports the development of successful theoretical methods. This
insight is reflected in the work reported herein, particularly
in the description of the design, psychology, history, and life
cycle of documents that has shaped the theory of structural
information potential.

B. LAYOUT-BASED DOCUMENT TRIAGE
The classification of documents with respect to their infor-
mativeness is a task common to a number of applications,
notably document overview, retrieval, summarization, and
presentation. The problem becomes more critical as the num-
ber of documents to be processed increases (e.g., within
organizations, libraries, and archives), but is equally relevant
for a single document, such as when browsing a digital book.
Informativeness is a relational quality, in that it depends
on both the stimulus and the observer. In cases where prior
knowledge about the user is lacking, or where there are many
users with heterogeneous interests, a user-independent esti-
mation of document informativeness is necessary. An addi-
tional constraint is the speed with which users may acquire
the information presented to them. From a statistical perspec-
tive, the most commonly applied solutions rely on some form
of data summarization and sampling.
Summarization consists in beginning with a given docu-

ment set or item and synthesizing a new, more compact one
that retains the characteristic features of the original. For text

documents, this typically involves removing text chunks so
as to reduce the overall redundancy and fit the text in a
smaller spatial frame, producing something like a more or
less extended abstract or even a title [163], [164]. Image
summarization is conceptually similar but more difficult to
realize; for example, representing a person by her or his
face and a wood by a single tree [165], [166], removing
empty areas from document pages [167], replacing a color
image with a black-and-white line art sketch, or reducing
an image to its dominant colors [168]. Documents repre-
senting three-dimensional data (e.g., buildings or landscapes)
and multimodal documents (e.g., videos) are far more com-
plex to represent compactly (a high-quality movie trailer
goes beyond simple cut-and-paste; it is an artistic project in
itself) [169], [170].

This article’s contention that spatial organization is
informative has also been applied to document summariza-
tion. For example, this author has introduced the Docu-
ment Towers visualization paradigm, which represents the
three-dimensional structure of bounding boxes of para-
graphs, images, and other entities in paginated documents as
architectural wire-mesh models that resemble buildings and
cities [171]. The quantified structural information potential
is encoded as a color-coded ‘‘ribbon’’, which allows users
to take stock of features such as document fragmentation,
regularity, and outliers without opening the document itself.
In addition to facilitating overview and navigation, this infor-
mation enables document type, quality, and other insights to
be inferred, often serendipitously.
Sampling differs from summarization in that it does

not create new entities but instead aims to identify a
limited amount of existing document parts that are rep-
resentative of the whole. A further difference can be
compared to the distinction between statistical expecta-
tion and the probability density function: while summa-
rization often ends up presenting the average content
or the most informative (e.g., the table of contents),
sampling may provide the full range of content types
(e.g., cover, text, figure, index). Semantic layout analysis
is therefore a dominant method used to sample document
images, as it benefits from not requiring character recogni-
tion (a substantial argument in support of its performance
and quality, particularly given that noisy, historical, and/or
handwritten documents still present challenges for this pro-
cess) [172], [173]. Another sampling approach is pattern-
driven; for example, a handwriting dataset can be compactly
represented by a few ‘‘vantage point’’ samples [174]. This
is a classical pattern classification and clustering problem,
resulting in an ordering specific to an application domain
and dataset. A good example of the complexity of defining
interestingness is given in [9], where the interaction of factors
as diverse as color, layout, content, reading ergonomy, and
readership is analyzed. The contrast along multiple dimen-
sions in terms of types and number of entities between neigh-
boring document pages has also been used as a criterion for
informativeness, in the framework of Shannon’s information

13110 VOLUME 10, 2022



V. Atanasiu: Structural Information Potential and Its Application to Document Triage

theoretical definition of information as the amount of ‘‘sur-
prise’’ [175]. The work presented in [176] is the closest to
a pure pattern-based measure of document informativeness
such as that described in this article. Although it aims at
being a fast, simple, and approximate method (in the spirit
of the triage task), it does not address spatial organization.
Instead, page informativeness is quantified as the degree
of (chromatic) saturation and (achromatic) lightness com-
puted over the connected components of binarized pages and
weighted by their size.

This succinct survey reveals how the quantification of
informativeness has been approached at various points on
the spectrum, ranging from pattern to semantic to contextual
analysis. However, the quantification of spatial organization
and the derivation of insights therefrom remains a fruitful
research direction for computational document analysis.

III. METHOD
The empirical insights expounded in the introduction
suggest that pattern informativeness varies along a
uniform–clustered–regular continuum. The goal of this
section is to introduce a quantitative description method,
namely the structural information potential, which facilitates
the ordering of patterns along this continuum. A discussion
of the correspondence between maximal SIP and minimal
structural redundancy is also presented, as the latter provides
a theoretical foundation for the former.

A. STRUCTURAL INFORMATION POTENTIAL
We begin by introducing the SIP equations, then explain the
general rationales behind them, after which we discuss each
element of the procedure in detail.

1) CORE PROCEDURE
The core mathematical machinery of the structural informa-
tion potential measurement consists of the Shannon entropy
of the logarithm of the power spectrum of a binary image’s
two-dimensional Fourier transform. Hence, it is a mixture
of information-theoretical concepts and signal processing,
with a fractals perspective and properties of the golden ratio
playing also a role, as shall be seen. Formally, the value
SIP ∈ [0, 1] is obtained through a number of equations and
algorithmic steps:

SIP = 1− |dSIP|, (4)

dSIP = T
(
Hr
(
log2

(
1+ V

(
|F (B (I )) |2/n

))))
, (5)

where I is an intensity image, B a binarization process, F the
image’s Fourier transform [177], |·|2 the power spectrum (S),
n the number of image pixels, V a vectorization algorithm for
the input matrix (described below), Hr the relative Shannon
entropy, T a transfer function used for convenience purposes
(also described below), and dSIP ∈ [−1,+1] the divergence
from maximum SIP. The utility of dSIP is to concomitantly
provide information about the intensity of the information
potential as given by the absolute value, |dSIP|, and locate

FIGURE 5. Illustration of the effect of binarization of a pure sine signal
on the Shannon entropy, H , of its frequency domain magnitude.

the pattern type on the uniform–clustered–regular continuum,
made explicit by the signum, sgn dSIP. For the sake of
simplicity, we will use the same notation (‘‘SIP’’) to denote
both the concept of structural information potential and its
instantiation in a particular mathematical expression; when
necessary, a qualifier will provide clarification.

2) FREQUENCY DOMAIN AND ENTROPY
The choice of the frequency domain for pattern analysis has
a number of benefits [178]: it facilitates the integration of
sample points across space, and thus the description of spatial
structures in terms of regularity; it enables characterization
of the degree of clustering via the scale-space spectrum of
frequencies; finally, it allows for a pattern phase space to be
obtained for which the extreme values correspond to regu-
lar and uniform patterns in the spatial domain. (Recall that
the magnitude of the Fourier transform does not encode the
spatial location of structures, but rather contains information
about their form. For example, the magnitude represents the
frequency and amplitude of the sine wave, but provides no
information regarding the location of the local maxima; this
information is carried by the phase component of the Fourier
transform. From a SIP perspective, however, it is the form and
not the location of a pattern that is of primary concern.)

The use of the logarithm of the power spectrum stems
from the method (outlined above) for determining the frac-
tal dimension and is intended to allow the characterization
of clustered patterns. Normalizing the power in equation 5
makes it independent of image size; adding one to the squared
magnitude avoids the logarithm of zero and negative output
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values. To put SIP in a fractal perspective, SIP is a measure
of how far a pattern is from potentially being a fractal.

In addition to having a dimensionality reduction effect, the
role of the Shannon entropy is to help devise a linear space
in which patterns are ordered from uniform to clustered to
regular. This can be achieved if a transform is found such
that the extrema of the pattern space correspond to a vector
of zeros except for one value (i.e., an impulse) and a vector
with equal values (i.e., uniform), respectively; in that case,
the entropy will range from zero to one.

3) BINARIZATION
A uniform signal in the time domain has as its pair in
the frequency domain an impulse with frequency of zero
[179, p. 33]. As this frequency is ignored in the SIP measure-
ment method, the Shannon entropy value of the remaining
power spectrum will also be zero, as desired. Considering
that the Fourier transform uses sines and cosines as base
functions, the sinusoid is the regular pattern with the fewest
spectral artifacts (e.g., aliasing, harmonics, Gibbs effect
[180, pp. 194–200, 218–222]). It becomes an impulse in the
frequency domain [179, p. 29], and thus has zero entropy and
represents an undesirable outcome for our goal. However,
by binarizing the sinusoid, a step train is obtained, which
corresponds in the frequency domain to a set of harmonics of
the form 1/(f π ), f ∈ Nodd [181, pp. 102–113] [180, p. 257],
the effect of which is to increase the signal’s spectral entropy
(Fig. 5). A slightly different, but relevant, regular signal is the
pulse train, where the step length differs from the distance
between consecutive steps. As the spatial length of the pulses
expands and the pattern becomes more uniform within the
finite signal bounds, the power distribution is increasingly
compressed towards the lower frequencies [180, p. 201] and
the spectral entropy decreases, as desired.

In summary: (a) we translate the problem of devising an
analytic formulation of the pattern–informativeness space
in the frequency domain in order to be able to character-
ize spatial structures; (b) we employ the entropy because
its extrema are the impulse and the uniform distributions;
(c) we apply data binarization to transform the spectral repre-
sentation of regular patterns from the impulse to the uniform
distribution, so that the spectral entropy yields the desired
uniform–clustered–regular continuum. Taking advantage of
the spectral artifacts introduced by binarization is key to
obtaining measurements of the spectral entropy that order
patterns in a perceptually consistent manner.

The global Otsu binarization algorithm [182] has been used
to produce the SIP measurements presented in the figures
of this article. This general-purpose method was appropri-
ate for our intention to preserve document noise, a par-
ticularly important aspect of the card images presented in
the case study, as noise was found to have a direct impact
on the quality of the optical character recognition. In the
case of the head pictures of Fig. 21, however, the back-
ground shadow was impinging on the preservation of facial
details that were the focus of interest during binarization; for

this reason, the locally adaptive algorithm of Raleigh was
chosen [183]. Conversion from color images to grayscale
is realized by converting the images to the perceptual
CIELAB color space and extracting the lightness channel, L*
[184, pp. 30, 95, 200–212]. The binarization step of the SIP
measurement is not necessary for data that is already binary.

4) DIMENSIONALITY REDUCTION
The dimensionality reduction of the two-dimensional power
spectrum to a vector is performed to ensure the rotation-
independent measurement of patterns. The step consists in
averaging data points of identical frequency. Due to quantiza-
tion, however, digital images have sparse spectral representa-
tions; for example, the lowest frequency is expressed only at
two orientations, 0 and π radians, in the usual Cartesian rep-
resentation of the Fourier transform. To guarantee sufficient
data and avoid flattening the spectrum (which artificially
increases entropy), the frequencies are therefore rounded
to the nearest integer prior to averaging the corresponding
power spectrum values. We also disregard the direct com-
ponent (DC; it has a frequency of 0) from the computation,
which has no impact on the image pattern, since it represents
the mean signal power. The vectorization procedure can be
formally expressed as

w = int(ω + 0.5), (6)

n = card(unique(w)), (7)

V =
n∑
i=1

Pwi/card(wi), (8)

where the vector ω contains the frequencies corresponding
to the power spectrum values S, the matrix into which the
vector is indexed, withω ∈ R≥0 ;w is defined over the integer
frequencies, w ∈ N≥0 ; n is the index of the rounded Nyquist
frequency into the unique values of w; and card(wi) is the
number (cardinality) of samples for a given integer frequency.
(The Nyquist frequency for an image is half the number of
pixels of the image diagonal.)

5) MAXIMAL SIP
Given that the SIP method orders patterns along the uniform–
clustered–regular continuum, the following two fundamental
questions arise: ‘‘What is the pattern corresponding to maxi-
mal clustering?’’ and ‘‘What dSIP value does this pattern have
before it was calibrated to 0?’’ The second question will be
answered here, while a tentative answer to the first question
is provided in section III-C4.

Referring to the dSIP equation (5), we are interested in
finding the value f, such that T (f) = 0. Whatever this
value might be, it should correspond to a maximally clus-
tered pattern for any length n of the power spectrum (S) of
equation (5), including for n = 2. Anticipating the explana-
tions to follow, maximal clustering corresponds to minimal
redundancy; for the division of a whole into two parts (hence,
n = 2) this is the reciprocal, 8, of the golden ratio, φ, 8 =
1/φ = (

√
5−1)/2 ≈ 0.6180 (see section III-C1). We further
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FIGURE 6. Intensity (top row) and binarized images (bottom row) of random fractals, with various power spectrum exponents, α, and their
corresponding dSIP values. The third value is the negative of the golden ratio (−φ ≈ −1.618), the fifth value is the negative of twice the reciprocal of the
golden ratio (−28 =

√
5− 1 ≈ −1.2361), and the sixth value is twice the negative of the value f of equation 9 (−2f = 2 log2 8 ≈ −1.3885). The fractal

images are obtained by synthesis in the frequency domain, through inverse Fourier transform from
√

f α magnitude, random phase, and DC = 0; a
subsequent zero-level cut produces the binary images [51, pp. 49–50] [49, p. 122]. The fractal dimension, D, of the image corresponding to
α = −2f ≈ −1.3885 is D = (6+ α)/2 = 2.3058. For the ‘‘paradoxon’’ of images with fractional dimensions D /∈ [2,3], i.e. outside the expected bounds
defined by the topological and Euclidean dimensions, see [53].

FIGURE 7. Median (dot markers) and range (bar markers) of dSIP values
of one hundred binary random fractal images, a sample of which are
shown in Fig. 6, vs the exponent α of the fractals’ power spectrum power
law distribution, f α . The median dSIP of the images with α ≈ −1.3885 is
−0.0208.

note that the input to T is modified logarithmically by the
relative entropy Hr . Thus, we define f (let it be called the
‘‘fluorescent number’’, as related to the most conspicuously
clustered patterns, and following the graph theory terminol-
ogy applied to the rainbow family of graphs) as the logarithm
of the reciprocal of the golden ratio, or, equivalently, as the
logarithm of the golden ratio:

f = − log28 = − log2((
√
5− 1)/2)

= log2 φ = log2((
√
5+ 1)/2)

0.6942. (9)

We have empirically validated this logic multiple times
with the numerous datasets we have processed. The reader
may ascertain for her- or himself that the patterns with a
dSIP close to 0 do indeed present the highest degree of

clustering. A good example reference is the cover drawing
of the magazine shown in Fig. 15 (framed in red), which is
highly clustered due to the variety of shape sizes and the
perspective view. It has a dSIP value of +0.0339, which
is close to minimal, as expected. Another example drawn
from the case study is the card with minimal dSIP and high
clustering in Fig. 18e and 19. Furthermore, the argument
is also supported from an analytical point of view by the
following observation. If we consider the epitome of clus-
tered patterns — the fractals — then we can observe that
by using the value −2f as the exponent of their defining
power law distribution of the power spectrum, f −2f, we can
obtain fractal images with a median dSIP close to zero,
dSIP = −0.0208 (the doubling of f is due to images having
an exponent twice the value it has for signals [51, pp. 49–50]
[49, p. 99, 105, 122]; Fig. 6, Fig. 7).

6) TRANSFER FUNCTION
The transfer function T calibrates the structural information
potential value to facilitate easier mathematical manipulation
and cognitive interpretation. However, the following issue
arises: due to the use of the relative entropy Hr in equation 5,
the values within the transfer function T are bound to the
[0, 1] range, the extrema of which correspond to uniform
and regular patterns (see section III-B). As explained above,
the pattern with maximal clustering (and, therefore, maximal
structural information potential) has the value f ≈ 0.6942.
However, f is not the center of the [0, 1] range, and the numer-
ical pattern informativeness levels computed with the SIP
method before calibration (say 0.4936 and 0.8107) are neither
immediately comprehensible nor directly comparable. The
solution we propose is to use a transfer function, T , to remap
the values such that maximal clustering is attained for 0,
maximal uniformity for −1, and maximal regularity for +1.
We will then say that dSIP is a measure of divergence from
the maximum structural information potential, with its sign
indicating the pattern towards which it tends: positive for a
more regular pattern and negative for a more uniform pattern.
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FIGURE 8. Conceptual schema of the generic relationship between information and structure, along with the correspondence of the visual and
functional organization of documents. — (a) Uniform pattern, −0.106 dSIP; censored newspaper front page; Austria, August 9, 1918 (Austrian National
Library). — (b) Clustered pattern, +0.173 dSIP; memorandum frontispiece, including institutional header, summary, circulation list, and secrecy stamps
(Claude Shannon, ‘‘A Mathematical Theory of Cryptography’’’, 1945, AT&T Bell Laboratories) [185], [186]. — (c) Random pattern, +0.276 dSIP; official FBI
printed form, heavily annotated by handwriting and stamps (Kennedy Assassination Records Collection, National Archives and Records Administration).
— (d) Regular pattern, +0.424 dSIP; typography inspired by medieval manuscripts, by the Arts and Crafts movement exponent William Morris. (‘‘The
Golden Legend’’, 1892, London, Kelmscott Press/Quaritch Books; author’s personal collection).

Furthermore, to honor the linguistic expression ‘‘maximal (or
minimal) structural information potential’’—which is awk-
wardly 0 (respectively both [sic]−1 and+1) when computed
via dSIP—wewill define SIP as given by equation 4, which is
maximal at 1 and minimal at 0, representing a more intuitive
situation.

To map the values from the range [0, f, 1] to [−1, 0,+1],
we fit a second-order polynomial to the three value pairs and
obtain the following coefficients for an input value x (where
x represents the input into T in equation 5) and output y:

y = 1.83 x2 + 0.1699 x − 1. (10)

As a further refinement, we counterbalance the non-linearity
resulting from equation 10 by taking the logarithm of the

output y for the final definition for the transfer function T :

T =

{
log2(y+ 1), for y ≥ 0.
− log2(|y| + 1), for y < 0.

(11)

B. PATTERN PHASE SPACE
Consider a raster image in which the pixels take the values
of zero and one. The most homogeneous pixel distribution
is obtained for a checkerboard pattern where every pair of
adjacent pixels have distinct values; in other words, when
the pattern is regular. Any disturbance of this regularity will
decrease the homogeneity, including random disturbances.
When the disturbance is not deterministically or stochas-
tically uniformly distributed across the image, then pixel
clusters will emerge, with maximal clustering attained when
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the clusters have sizes at all scale-space levels (under these
circumstances, the entropy of the scale-space will also be
maximal). Aside from the regular pattern that exhibits pixel
objects of only a single size, and is thus located at a single
scale-space level (and has zero entropy), another pattern with
this characteristic is the uniform pattern. It appears that when
pixels of identical value ‘‘coagulate’’ into a compact mass,
the surrounding of this mass becomes uniform. These distri-
butions define a unidimensional space of pattern ‘‘phases’’
that vary from regular to random to clustered to compact to
uniform.

Fig. 8 provides a practical example of the pattern phase
space described above in theoretical terms. It shows the
SIP classification of sample document images along a
unidimensional pattern space. The progression from regular
pattern to clustered to uniform is readily observable and
conforms to the problem requirements. Note in the upper
part of the image the parallel between the terminologies from
various fields (preeminently typography, signal processing,
and material sciences). The conceptual system introduced
here, and further discussed below, may be used as a model
to describe the correspondence between the visual and func-
tional organization of documents. At the paragraph level, the
penmanship and typographical ideals are the production of a
homogeneous pattern (appearing as gray when observed from
a distance), while the functional hierarchy is reflected in a
clustered layout (the technical term is ‘‘asymmetrical’’). Post-
production annotations and degradations disturb the intended
(ir)regularity, introducing randomness. Blank pages (etymo-
logically French for ‘‘white’’, another chromatic term in the
field of documents) mark the end of a functional unit, as well
as containing a reduced amount of semantic information.

The uniformly random pattern is located between the clus-
tered and the regular, since it does not comprise large uniform
areas. As such, their dSIP value may be very high (Fig. 6).
Random patterns can occur due to signal noise or annotations
(in the case of text documents). Note that other pattern spaces
are possible: the uniform–random spectrum [187] is appropri-
ate for patterns with statistically constant homogeneity, such
as homogeneously distributed line segments of quasi-equal
length and variable orientation.

Patterns with semantic value, such as images of faces,
are obviously very important for human beings, and can be
located anywhere in the proposed pattern space. Because
these patterns require semantic analysis and contextual infor-
mation, they cannot be considered from a low-level computer
vision perspective such as that described here, just as the
Shannon entropy casts information in purely mathematical
terms.

C. GRAPH STRUCTURES WITH MINIMAL REDUNDANCY
While previous sections dealt with the measurement of
SIP, this section concerns the definition and design of
mathematical objects with minimal structural redundancy;
that is, those that maximize the structural information
potential.

FIGURE 9. (a) Given the unit segment c and its division in two segments
a and b, the figure shows the values of the ratios a/c (red), b/c (green),
and a/b for a ∈ [0,0.5] and b/a for a ∈ [0.5,1]. The minima of the
maximum of the ratios correspond to the reciprocal and the reciprocal
conjugate of the golden ratio (dotted lines). — (b) Relative Shannon
entropy of the segments taken pairwise. — (c) Relative Shannon entropy
of the logarithm of the pairwise ratios.

While measurement may be employed independently of
design, a discussion of the latter supports a firmer under-
standing of the former. In particular, such discussion pro-
vides a formal rationale for the calibration of SIP values,
as well as visual evidence and quantitative characterization of
objects with maximal SIP value. Furthermore, it reveals links
between SIP and some interesting mathematical concepts,
thereby creating an opening for generalizing SIP to structures
other than images.

We will refer to objects with minimal structural redun-
dancy as ‘‘fluorescent’’ objects, in reference to the ‘‘rainbow’’
graphs (which have edge values that are distinct, but not nec-
essarily maximally distinct), to the name of the symbol, phi,
denoting the golden ratio (which minimal redundancy prop-
erties as discussed below), and to the fact that fluorescence
maximizes perceptual color discrimination. The proposed
notation is FvVdD{·}, where d is the object’s embedding dimen-
sion, v the number of vertices, and the placeholder {·} may
be used to specify edges. For example, F3V

2D{e12, e13, e23} :
{x1, y1, . . . , x3, y3} designates a fluorescent triangle and the
vertices’ coordinates.

In the following, the argument will proceed from one-,
to two-, to three-dimensional objects, from shapes to patterns,
and will conclude with some remarks of a more general order.

1) ONE-DIMENSIONAL FLUORESCENCE FOR THREE POINTS
How might a whole be divided into two parts so as to max-
imize the difference between the parts, while concomitantly
maximizing their respective sizes? The first condition of
this problem is satisfied when either of the parts vanishes
in the limit, while the second condition corresponds to the
two parts being equal. The overall solution lies in between
these extrema and is found by determining the value at
the intersection of the functions representing the conditions,
i.e., f (x) = 1 − x and f (x) = x/(1 − x), for x ∈ [0, 12 ] and
f (x) = x and f (x) = (1 − x)/x, for x ∈ [ 12 , 1], or solving
the equation x2 − 3x + 1 = 0 and x2 + x − 1 = 0.
For the definition domains, these have the solutions x1 =
(1−
√
5)/2+1 ≈ 0.3819 and x2 = (1+

√
5)/2−1 ≈ 0.6180.
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FIGURE 10. Design process of the fluorescent triangle. — (a)–(c) Pairwise
edge ratios of a triangle ABC, with unit base AC, for all locations of vertex
B within a unit square. Grayscale tones encode values between 0 (black)
and 1 (white). — (d) Ratio of base and sum of opposing edges.
— (e) Maximum of the surfaces defined by the edge ratios. The minimum
of this surface for x ∈ [0, 1

2 is marked by a + symbol, and its coordinates
are specified next to the ordinate. — (f) The triangles with the most and
least dissimilar edge lengths, i.e., the isosceles triangle (blue outlines)
and the fluorescent triangle (solid red). Basic mensurations: apex:
x ≈ 0.3774, y ≈ 0.4269; edge lengths: AB ≈ 0.5698, BC ≈ 0.7548, AC = 1;
angles: α ≈ 45.5199◦, β ≈ 97.0399◦, γ ≈ 34.4400◦; area: T ≈ 0.2134.

FIGURE 11. Fluorescent tetrahedron based on minimization of pairwise
edge ratios and ratios of one edge and two adjacent edges. Coordinates
of base triangle apex on a grid with resolution of 0.025 units: x = 0.325,
y = 0.4, z = 0; tetrahedron apex: x = 0.375, y = 0.1, z = 0.1.

These values are also known, respectively, as the conjugate of
the reciprocal, 8′, and the reciprocal, 8, of the golden ratio,
φ = (1 +

√
5)/2 = 1/8 = 1/(1 − 8′) ≈ 1.6180. A dia-

grammatic representation of these solutions (Fig. 9a) allows

FIGURE 12. Fluorescent pattern generated from a fluorescent triangle.
Note the similarity with the naturally occurring patterns of seashells [188].

us to state the criterion for determining the minimal structural
redundancy (or maximal SIP) as the minimum of the maxi-
mum of the ratios of the part and the whole: R = {a/(a +
b), b/(a+b),min(a, b)/max(a, b)},SIPmax = min(max(R)),
where a+b = 1, and (a, b) ∈ [0, 1]. In other words, maximal
SIP corresponds to the minimum of the range of the ratios of
a system’s components. The use of these ratios is equivalent
to using the relative Shannon entropy, H, for each edge pair
(Fig. 9b). The max formulation can be avoided by combining
ratios and entropy: SIPmax = max(H (− log2(R))) (Fig. 9c).
The similarity between this equation and equation 5 indicates
that maximal SIP is expected for − log2(8), which is the
reason why this value was used for calibration in the SIP
measurement algorithm.
Remark — Note the inclusion of the whole as a third

element in themeasure of the sizing of the two segments. This
is explained by the whole representing the highest scale of
the scale-space domain defined by the segments, thus making
it part of the system. This is the case in many application
domains, particularly those that are subject to human factors,
such as document design and perception. For instance, the
sizing according to the golden ratio of the width of a text col-
umn and a figure placed next to each other ensures maximal
legibility for each while giving prominence to one of them.

2) TWO-DIMENSIONAL FLUORESCENCE FOR THREE POINTS
Let us now extend the problem to two dimensions and ask
the following question: What is the triangle with the most
dissimilar edges? Above, we identified the solution for
three collinear points that define a degenerate triangle. While
this triangle has minimal redundancy between its parts when
taken pairwise, it also has zero area, unlike common trian-
gles. More importantly, the degenerate triangle has maxi-
mal redundancy between a part and a subset: the triangle
base AC equals the sum of the other edges, AB and BC .
Therefore, we introduce the ratio of the base and the sum
of the other edges as part of the problem formalism, with
the effect of increasing the size of the triangle to a certain
equilibrium point below that of an equilateral triangle, for
which redundancy is maximal. We now solve the equations
AB/BC = BC/AC = AC/(AB+ BC), given the coordinates
x and y of the triangle apex, with AB =

√
x2 + y2, BC =√

(1− x)2 + y2, and AC = 1. The solutions in the abscissa
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interval [0, 12 ] yield x ≈ 0.3774 and y ≈ 0.4269. This is
the elemental shape with maximal SIP, as per our definition
(Fig. 10). A remarkable trait of this triangle is that it extends
an essential property of the golden ratio—that of minimal
redundancy between parts and whole—to two dimensions.

3) THREE-DIMENSIONAL FLUORESCENCE FOR FOUR
POINTS
Fig. 11 illustrates the extension of the fluorescence principle
to three dimensions, here for a tetrahedron with minimal
edge redundancy. This tetrahedron represents a pendant of
the equilateral tetrahedron, one of the five regular Platonic
solids. The locations of the vertices of this graph have been
computationally determined by placing vertices v1 and v2 at
two adjacent nodes of a unit cube, then placing vertices v3 and
v4 in turn at all locations of an orthogonal grid with resolu-
tion of 0.025 units. To avoid triangles with identical shape
but different sizes and orientations (metamers), locations for
which the length of edges ending in vertices v1 or v2 is more
than unity were excluded. The measure of redundancy was
based on the ratio of pairwise edges, as well as the ratio of
one edge taken at a time and its adjacent two edges. The latter
criterion is adopted from the triangle case discussed above,
and its effect is to avoid facets with zero area. This benefits the
fluorescencemeasurement, as it neatly facilitates the quantifi-
cation of redundancy across dimensions and structure types,
such asmesh surfaces and solids. (This observation highlights
the possibility of using criteria other than the ratio of edge
subsets, such as the perimeter and the volume, to avoid shape
degeneration; these would lead to different solutions, but
would be more loosely consistent with the problem definition
in terms of edge ratios alone. Instead, they may serve special
applications, such as maximization of the volume generally
resulting in convex solids.)

The inquiry into minimal structural redundancy can be
pursued for graphs with an arbitrary number of edges, such as
polygons and mesh surfaces, or of arbitrary structure, such as
circular, tree-like, or network-shaped graphs. In this article,
the goal is limited to open a window into these possibilities.

4) TWO-DIMENSIONAL PATTERN FLUORESCENCE
We investigated minimal structural redundancy for only the
most basic graphs (line bisection, triangle, and tetrahedron),
stopping short at identifying the fluorescent pattern(s) with
arbitrary size. A family of fractals is the likely answer—but
is there a fractal dimension more apt to produce fluorescence
than another? Furthermore, considering deterministic fractals
(such as the Koch curve [46, pp. 87–91]), it could be argued
that there may exist a single fractal that minimizes structural
redundancy. I propose that the design of such a pattern may
consist in taking the simplest structure of a given dimension
(e.g., the fluorescent triangle for two dimensions) and repli-
cating it infinitely with a certain size change rate (Fig. 12).
The result consists, in fact, in an affine transform of the mod-
ule of well-known fractals (Cantor dust, Sierpiński gasket and

FIGURE 13. Comparison of mathematical and perceptual fluorescence.
— (a) Human experimental participants tendentially place the middle of a
line left of its geometrical location. Here, an example from four male
computer scientists, aged late 20s to late 40s, in which the outlined
markers above the line represent their choices. — (b) The same group was
tasked to segment a line into the two most dissimilar segments with
respect to each one, as well as to the whole line, i.e. according to the
golden ratio. — (c) In this task the participants are instructed to draw a
triangle with the most dissimilar edges, i.e. a fluorescent triangle, shown
in dotted red, as opposed to the equilateral dotted blue triangle.

tetrahedron, and Julia set [46, pp. 65–79, 120–123]), so as to
morph them into a fluorescent shape.

5) FLUORESCENCE AND SIP
Let us examine the link between SIP and minimal graph
redundancy, two major themes of this section.

The concept of structural information potential, on one
hand, posits a correlation between structure and informa-
tion, based on the scale-space distribution of the structure,
which defines a pattern spectrum ranging from compact to
homogeneous via clustered and random. This perspective on
patterns is quantified by the SIP method in the frequency
domain using the Fourier transform and the Shannon entropy.
The concept of fluorescence, on the other hand, attempts to
characterize structures in terms of component redundancy,
and to this end adopts a graph theoretical formalism of the
ratio of combinations of edge subsets.

The integration of these two perspectives is realized
through the concept of scale-space redundancy, which
subtends the pattern spectrum and has a direct information
theoretical meaning (Fig. 8). Specifically, a pattern that max-
imizes both the number and the size of constituent entities will
fill the scale-space in an optimal manner while having max-
imal structural information potential and minimal structural
redundancy. This is the fluorescent clustered pattern, which
stands in opposition to the uniform pattern of a maximally
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sized single entity, as well as the homogeneous pattern of
minimally sized and maximally numerous entities.

In conclusion, the study of graph redundancy offers a
powerful and versatile instrument to understand the elemental
levels from which clustered and structurally informative pat-
terns emerge. One goal of this section is to provide precisely
such a low-level explanation of the SIP method.

6) FLUORESCENCE AND HUMAN PERCEPTION
Human estimation of pattern redundancy differs from math-
ematically derived values [189], [190], which is an impor-
tant factor to consider when measuring man-made patterns
(such as documents) or evaluating psychophysically formal
methods of redundancy measurement. A well-known exam-
ple is the systematic bias in line bisection (Fig. 13a) [191].
The location of the fluorescent line partition and the draw-
ing of the fluorescent triangle exhibit similar variability
and divergence from the mathematically defined shapes
(Fig. 13b, c). Psychological aspects, furthermore, interact
with cultural and social ones, forming a much more com-
plex and dynamic ecosystem of constraints upon informa-
tiveness than the basic, low-level uniform–clustered–regular
pattern-informativeness spectrum. The subjective and con-
textual dimensions of human pattern perception may nev-
ertheless be directly relevant to the evaluation of the SIP
measurement method; for instance, to explain why observers
might disagree about the redundancy of a given pattern.
A converse issue is that of human-designed fluorescent con-
figurations, such as the text/figure sizing in document layout
mentioned above, whose divergence from the mathematical
model may even be intentional. In particular, this may often
be the case with regard to the uncritical application of rules
often shunned by artists, keen observers of form, as illus-
trated by the words of the illustrious French photographer
Henri Cartier-Bresson: ‘‘I hope that we will never see the
day when the merchants will sell [golden ratio] diagrams
engraved on camera displays.’’ [192, pp. 26–27]. The quote
exemplifies the need to develop models of layout irregularity
that integrate human factors. When applied to documents, the
desideratum has been carried out in the design of the SIP
formalism, which emerged from empirical observation and
reflects low-level perception. At such levels of complexity,
cognitive automatisms are more amenable to modelization by
the pattern–informativeness spectrum. The task of document
triage, with its emphasis on fast temporal information pro-
cessing, is a good case study for testing the model and shall
be discussed next.

7) REPRESENTATION
The opposing states of minimal and maximal redundancy
may be represented in a single view. Fig. 14 presents the
panchromatic prism, whose top is an equilateral triangle
(i.e., ‘‘gray’’ in chromatic graph theory terminology), while
the base is a triangle with most dissimilar sides (i.e., ‘‘fluores-
cent’’). This mathematical object is visualized in the manner

FIGURE 14. The panchromatic prism.

of Leonardo da Vinci’s drawings of the five Platonic regular
bodies [193].

IV. EXPERIMENTS
In this section, we apply the method of document ordering
developed above to a small set of representative real data, then
compare the results to those of other methods. Next, we use
a case study to test the robustness of our approach on a large
dataset with respect to the triage task. Finally, we demonstrate
that the proposed concept may be generalized to objects
beyond text-based document images and applications other
than triage.

A. COMPARISON OF METHODS
1) VISUAL EVIDENCE
Fig. 15 juxtaposes document pages ordered using the major
methods discussed in this article: structural information
potential, approximate entropy, spectral flatness, and the ratio
of ink pixels to page area. The data are sampled from the
104 binarized pages of an issue of the New Yorker magazine
(please refer to Fig. 26 to 31 to view all pages). This particular
dataset was chosen for display among the hundred analyzed
owing to its diversity of text, drawing, and image patterns,
which provides exemplary illustration of the entire uniform–
clustered–regular spectrum against which we want to test our
methods.

We first observe that the ink/page ratio method leads to
a mix of structurally unrelated patterns, and to a split of
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FIGURE 15. Ordering (left to right and top to bottom) using the ink-to-page-area ratio (first top block), approximate entropy (second block), spectral
flatness (third block), and structural information potential (last block; dSIP ∈ [−0.3109, +0.6523], min(dSIP) = −0.0073, corresponding to the eighth
image in the first row). Colors mark the most uniform (blue) and homogeneous (green) pages, and the highly clustered cover page (red). — Credit: The
New Yorker, vol. 93, no. 33, October 23, 2017; Condé Nast.

homogeneous clusters, such as the mostly empty pages (the
third image and the third from last image of the top-most
block in the figure). Approximate entropy is very good at
clustering multiscale patterns, such as the first three pages

of the sequence in the second block, which depict either
entities with different absolute sizes (e.g., people and robots
in the street, the rays of the trilobite), or a diversity of sizes
resulting from a perspective view (rows of bars in a prison
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hallway). However, the method fails to group together homo-
geneous patterns (text-only pages are interspersed with text
and illustration pages) and empty pages. Spectral flatness
(third block) groups empty pages and follows them with mul-
tiscale patterns, but fails to consistently group homogeneous
patterns (the result of spectral entropy is similar, but less
good). Structural information potential (last block) achieves
a perceptually gradual ordering of the pages from empty to
multiscale to homogeneous.

2) QUANTITATIVE EVALUATION
The previous section has presented visual evidence that the
SIP method provides a better ordering of document pages
on the uniform–clustered–regular pattern spectrum than the
other methods considered. We now quantify the difference in
suitability between the methods.
Method—Let the monotonously increasing or decreasing

ranking of n items P = {p1 ≺ p2 ≺ . . . ≺ pn} and P ′ =
{pn � pn−1 � . . . � p1}, respectively, be the baseline
orders of comparison. Any permutation Q of the items will
be a less desirable ordering to a degree in accordance with
a certain criterion of desirability. In the framework of the
pattern spectrum, this is the case when two patterns from
the opposite sides of the spectrum appear next to each other
following permutation; that is, when the difference between
their original rankings is maximal. For example, given an
ordering of achromatic chips from white to gray to black,
placing the black chip next to the white will disturb the
monotonicity (Fig. 16). In terms of document pages, this
corresponds to placing a homogeneous text page next to a
mostly empty page. Our goodness criterion is, therefore, the
difference between two adjacent ranks of the permutation Q
of the order P (or its reflection P ′).

We repeat the process of flanking items from opposing
extremities of the monotonous ranking and obtain the fol-
lowing permutation sequences, which represent the least
desirable orderings: R = {pk+2, pk , . . . , p5, pn−4, p3, pn−1,
p1, pn, p2, pn−3, p4, . . . , pk−1, pk+1}, and its reflection R ′,
where k = n/2 (Fig. 16d). Having established the best and
worst orderings, we next set about developing a quantitative
measure of ordering goodness.

Given that the objective is to maximize the difference
between adjacent items of a permutation Q, we generalize
and compute the sum of the differences between the ranks ri
of consecutive items, D1

=
∑n−1

i=1 ri+1 − ri; this allows us to
distinguish between monotonous and other orderings, since
the former have a computed value of n, D1(P) = n, and
zero for a second-order differencing, D2(P) = Dmin = 0.
To distinguish between the remaining patterns we apply the
differencing process n − 1 times, yielding the scalar Dn−1.
In other words, we compute at increasingly higher scales the
length of a shape with coordinates given by the order indices
in Q and the ranking values in P. The permutations with
the highest absolute value will correspond to the least desir-
able permutation R, and its isomorphisms, defined above:
Dmax(n) = Dn−1(R).

It is clear that this is the case considering that the n-minus-
one-th order differencing of even n and k = n/2 has the
form Dn−1 = −c1p1 + c2p2 + . . . − cn−1pn−1 + cnpn =
(ck+1pk+1 + ck−1pk−1 + ck+3pk+3 + . . . + c2p2 + cnpn) −
(c1p1+cn−1pn−1+c3p3+cn−3pn−3+. . .+ck+2pk+2+ckpk );
here c denotes the binomial coefficients for order n, with
ck+1 = ck > ck−1 = ck+2 > . . . > cn = c1 = 1; odd indices
are located in the first half of the series, and even indices in the
second half. The series is maximized for the ordering R and
its reflection R ′ = {pk+1, pk−1, pk+3, . . . , p2, pn, p1, pn−1,
p3, pn−3, . . . , pk+2, pk}. For example, for n = 10, we have
D9
= (126p6+84 p4+36 p8+9 p2+1 p10)− (1p1+9 p9+

36 p3 + 84 p7 + 126 p5). Since p6 > p4 > p8 > p2 > p10 >
p1 > p9 > p3 > p7 > p5 and pnpi ∈ N, i ∈ [1, 6], then
p6 = 10, p4 = 9, p8 = 8, p2 = 7, p10 = 6, p1 = 5, p9 =
4, p3 = 3, p7 = 2, p5 = 1, yielding the sequence R =
{5, 7, 3, 9, 1, 10, 2, 8, 4, 6}, whose D = 1930 is maximal
for all permutations. To account for isomorph permutations
with the same value but opposing signs, we take the absolute
value, |D|; while to compensate for the exponential growth
induced by the binomial coefficients that affects the distribu-
tion homogeneity, we take the logarithm, log(|D| + 1).

We are now able to characterize in the interval [0, 1] the
goodness D of any permutation Q of length n, following
normalization by Dmax(n) computed from the R of length n:

D(Qn) = log(|Dn−1(Qn)/Dn−1(Rn)| + 1). (12)

One limitation of this method is that it is only valid for
an even number of items. For odd numbers of items, the
permutations with maximal D will include a permutation for
which there is a difference of one between adjacent items,
which is not the maximal departure from monotonicity. For
large n, this is a benign limitation, since one item can be safely
removed if selected so that it has the least change in rank
across the permutations to be compared.

The author created this ordering distance measure after
being unable to find a suitable solution in the literature on
non-parametric statistics. However, in the field of combina-
torics, topological entropy exists as a measure of the com-
plexity of dynamical systems in the one-dimensional interval,
for which the extreme values correspond to the same permu-
tations for which our measure D is minimal and maximal,
respectively [47; 3; 72; 1]. The need to develop a newmethod
for apparently the same result is based on the different justifi-
cations made by the two methods as to why permutation R is
the ‘‘worst’’ case: there is no a priori rationale for considering
that the permutation maximizing adjacent differences is the
same as that which maximizes complexity, as defined by
topological entropy. A further reason is that our method is
more straightforward than computing the topological entropy,
which involves deriving a peculiar ‘‘induced’’matrix from the
permutation and finding its maximum eigenvalue. For large
datasets, such as all permutations for a given n, the differ-
encing method is also substantially faster, since it is easily
vectorizable. Nevertheless, the identical results in respect to
the extreme permutations suggest an equivalence between the
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FIGURE 16. Various permutations and their departure from monotonicity, computed with the differencing (D) and topological entropy (H) methods.

FIGURE 17. Departure from the ordering induced by the SIP pattern
classification method of four comparison methods based on the
document pages of Fig. 27–31.

n-minus-one-th-order differencing and eigen-analysis, per-
haps in the scale-space characterization of patterns that both
undertake. It may also be noted that topological entropy is not
equivalent to SIP or minimal redundancy as discussed in this
article. This can be determined by considering that topolog-
ical entropy (and adjacency difference) increases when two

items a and b are maximally different (that is, when a
lim
−→

0 and b
lim
−→ ∞), while SIP is maximal when both items and

their sum are maximally different (a/b = b/(a+ b)).
I have made both the differencing and entropy methods

available as open-source Matlab functions [6].
Results — Fig. 17 provides a graphical representation

of the shuffling of the document pages ordered with the
SIP method, as realized by the four comparison methods.
The numerical values indicate the departure from mono-
tonicity of the respective orderings. Approximate Entropy
induces the ordering most different from SIP, while that of
Spectral Flatness is the most similar. We can observe the
clear juxtaposition of pages from the opposite sides of the
uniform–clustered–regular spectrum in the Ink/Background
and Approximate Entropy orderings, along with the shifting
of page blocks in the case of Ink/Background and Spectral

Entropy, which disturb monotonicity at small and large
scales, respectively. Both distance measuring methods indi-
cate that, overall, there is a substantial ordering difference
between SIP and the other methods.

B. CASE STUDY
This section presents a real-world application of the structural
information potential measurement method. The beneficiary
is the Swiss National Library, and the goal is to merge the
information of corresponding bibliographical records in elec-
tronic and analog formats [194]. The case study covers the
pilot phase of an ongoing project, in which computational
methods are assessed in view of deciding on the next steps.

The analog records are palm-sized paper cards, typewritten
or printed, with handwritten annotations, crossings-out,
stamps, bar codes, rulings, and other graphical elements
(Fig. 18c–h). A total of 1.2 million cards were scanned
from high-contrast black-and-white films (accessible at
http://siibns.ch/french/cat1_frame.htm), at a resolution of
circa 500 by 300 pixels; this introduces various artifacts,
such as background noise and an irregular border around the
cards. Some cards contain no records, but only captions for
a sequence of cards in the wooden trays that were accessed
by library patrons searching the catalog. The texts often
mix together two or more of the four national languages
of Switzerland (French, German, Italian, and Romanche),
as well as English, Latin, and other languages. The majority
describe monographs and serial publications, but also maps;
the content is inconsistently semantically structured, is gen-
erally not made up of full sentences, abounds in entity names,
alphanumeric shelf marks, ISBNs, price tags in various cur-
rencies, and other codified data, and is rich in typographical
formatting of logical entities.

Such a wide typological variety of information, brevity,
and visual complexity presents a challenge for auto-
matic recognition. Attempts to perform optical charac-
ter recognition (OCR) on the whole dataset, using the
open-source Tesseract software [195] and the commer-
cial Google Vision [196], revealed that the obtained text
is not directly exploitable in the library’s public catalog
(Fig. 18i). It was therefore envisaged to provide users with
digital images of cards along the electronic record in the
same graphical interface window. However, which analog
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FIGURE 18. (a) 1.2 million library index card images, at one image per pixel, color-coded by their structural information potential, in physical sequential
order, rearranged for space reasons top-down and left to right, and shown at reduced size. The markers indicate thematic ranges. — (b) Histogram of
dSIP values and colormap for the data range. The letters indicate the approximate locations of the five cards shown above. — (c) Paper cards in the
library catalog trays. (Credit: Swiss National Library) — (d) – (f) Sample cards of the main visual pattern types, with their dSIP values. — (g), (h) Two
outlier types, found at the extrema of the dSIP distribution. (i) Tesseract OCR output for the card (f). — (j) – (n) Log power spectra of the card
images (g), (d), (e), (f), and (h) (to obtain one-dimensional spectra, the two-dimensional spectra are averaged and rounded to the nearest integer
frequency).

record corresponds to which electronic record is unknown,
and the two sets do not overlap. Consequently, the tech-
nical project objective of matching document images and
electronic texts is preceded by a feasibility analysis. This
requires a fast and appropriate classification of the cards.
Here, ‘‘fast’’ concerns readying the technical resources, the
human interaction with the data, and the lax requirements

for classification quality and sophistication—hence, a triage
task.

The dSIP values of the dataset images were measured
and the cards located in the pattern–informativeness space.
The ordering of the 1.2 million items was checked visually
for perceptual consistency and found to be satisfactory; a
sample of the results are presented in Fig. 19. The patterns
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FIGURE 19. Cards of one of the library catalog thematic sections, classified according to their structural information potential. The three highlighted
cards are shown in higher resolution in Fig. 18d–f. The second card is the closest to 0 dSIP, i.e. considered as the most clustered.

in this sample are representative (a) in semantic terms, as the
sample represents an entire bibliographical index section,
containing both various header cards and reference cards

(section CDU 00000001), (b) in document typological terms,
as it contains printed and handwritten text, noisy images,
and other significant features, and (c) in statistical terms,
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as the sample is roughly uniformly distributed over the pattern
spectrum (see the location of the three highlighted cards in
the overall distribution of Fig. 18b). The ordering is mean-
ingful as a typological categorization of bibliographical cards
and suggests several potential matching strategies between
physical and electronic records. The cards with clustered
visual patterns are so because, usually, they exhibit greater
typological information variety; in such cases, the matching
algorithm could be tuned to privilege the logical structure
as the matching criterion over linguistic matching. Cards
with homogeneous patterns are more likely to contain longer
coherent linguistic sequences, such as sentences, for the
matching of which syntactic analysis would be preferable.
Cards with low SIP value are either empty, are non-record
section headers, or contain very little text; as a result, they
may yield very poor matching quality, and therefore may best
be visually inspected and excluded from matching.

The classification of the cards using the measure of struc-
tural information potential was appreciated by both software
engineers and library managers for multiple reasons. It is
independent of the OCR output; it produces useful results
under conditions of uncertainty about the cards’ content;
moreover, it allows for rapid overview of a large digital
image collection that would otherwise remain largely invisi-
ble, and further involves the human in the matching process.
Thus, card triage by SIP became a complement to OCR in
decision-making on tasks such as go/no-go for automatic
record matching, selection of a card subset with an expected
matching quality, estimation of expected matching quality,
and evaluation of project resources (e.g., costs and duration
of groundtruthing and quality control).

Fig. 18a shows the color-coded dSIP values for the
1.2 million bibliographical cards in their physical sequence in
the original library card trays. Runs of similar dSIP values are
apparent, such as the conspicuous blue (i.e., low dSIP) central
column corresponding to author indices and mostly empty
cards. The heterogeneously colored area on the right-hand
side corresponds to cards indexing placenames, which have
varying degrees of visual density and clustering due to the
variety of information sources and the continuous updating
of the card information, involving many writing technologies
and annotation layers. The visualization’s pixels are interac-
tively linked to the card images, so that a visual investigation
may reveal that the blue run represents author index cards and
can thus be removed from the matching process. This visual-
ization is useful for a context-oriented analysis of the card
dataset. If, for example, an equivalence has been established
between dSIP values and expected matching quality, then it
may be used to predict the matching quality of the various
thematic classes of the cards.

Fig. 18b represents the dSIP values of the card dataset in
histogram form. This aggregated data yields several insights.
By extracting sample cards along the distribution to deter-
mine the patterns to which the values correspond, a visual
and quantitative estimation can bemade regarding the amount
of various card types and the expected matching quality.

FIGURE 20. This graphic shows the density distribution of the structural
information potential plotted against the ink pixel density in the digital
images of the library card dataset. An ‘‘ink pixel’’ represents an inked
area of the card surface, as opposed to the non-inked writing substrate;
in the cards illustrating this article, ink pixels appear in black; noise
modifies the groundtruth value of pixels. For legibility purposes, pixels
above the density level of 0.4 ink pixels have been slightly dilated. Note
the two pixels above level 0.8. The 1.2 million data points were
aggregated for visualization in a 1000-by-1000-pixel raster.

It can be observed that the bulk of the cards have a clus-
tered appearance, while cards with homogeneous information
distribution are not predominant. A further operationalizable
insight enabled by the histogram pertains to outlier detection
(Fig. 18g, h). In this case, a first observation concerns the
extreme dSIP values: scanned images with the objects of
interest partially out of frame are found in the lower values,
while the higher values contain images with strong noise.
Second, the left-most cluster of the distribution predomi-
nantly comprises section headers. While these do not contain
bibliographical information, and should thus be excluded
from the matching process to avoid a detrimental impact,
these cardsmay be useful formatching, since they identify the
topic to which the subsequent cards belong. This topic may
then be related to those extracted from the electronic records,
thereby increasing the probability of correct matches. The
bivariate plot in Fig. 20 supports a finer analysis of the his-
togram, specifically that it is the result of a mixture of pattern
classes characterized by different ink densities, as well as
non-linear and loose covariation between the amount and
distribution of ink on the cards.

The question might be asked as to whether simply clas-
sifying the binarized card images by the amount of black
pixels (i.e. ink) would not provide insights similar to the struc-
tural information potential. Fig. 20 demonstrates that this is
not the case: documents with identical ink density can have
very different ink distributions, and vice-versa, as a result of
distinct clusters with irregular shape and spread. May, then,
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FIGURE 21. Application of the structural information potential to video frames (top), three-dimensional objects (middle), and urban layouts (bottom).
— Credits: video: Trigon Film; sculpture: unknown artist; plans: SCHWARZPLAN.eu.

a classification by the number of recognized characters be
a sufficient estimate of matching quality? As illustrated by
Fig. 18i, this would not be effective either; even cards with
rich linguistic contextual information can result in very few
characters being identified.

From a machine learning perspective, the classification of
document images according to SIP may be utilized to opti-
mize the sampling of the training and test images. For exam-
ple, a uniform random sampling of the card dataset (i.e. the
typical sampling procedure) may result in an underrepresen-
tation of less numerous but semantically important classes,
such as scanning errors and cards with strong noise or that are
largely empty, which are visible at the distribution extrema of

the dataset SIP visualization in Fig. 18b. However, by using
the SIP distribution in conjunction with visual exploratory
data analysis, one can apply different sampling rates to differ-
ent parts of the dataset, thereby acquiring sufficient samples
for training the algorithms with the best possible accuracy
given the data.

In conclusion, the measurement of structural information
potential, coupled with interactive data analysis, provided
computer scientists with an inexpensive tool to support record
matching, particularly for sample selection and expected
quality estimation. It also aided library managers in making
faster and more informed decisions regarding an information
technology project on issues such as go/no go, expected
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FIGURE 22. Timeline of the layout evolution of the Swiss Neue Zürcher Zeitung newspaper, with the SIP value of the front page. — Credits: Neue
Zürcher Zeitung.

quality, and resource estimation. This case study is an exam-
ple of the usefulness of SIP for both quickly extracting infor-
mation from patterns and acting upon this information.

C. GENERALIZATION
The generic nature of the structural information potential
concept as defining a pattern distribution space allows it to
be applied to a variety of tasks and data types. Its main
utility advocated in this article is as a quantitative measure of
informativeness, which makes it appropriate for triage tasks,
as discussed above. Notably, however, the above case study
found that SIP was also useful as part of a decision-making
process, involving the estimation of OCR quality and needed
resources, and as a measure of image quality, given its ability
to distinguish images with uniform noise and erroneously
framed scans. Furthermore, SIP offers a simple computa-
tional solution for classifying document pages according to
the predominance of text, the presence of illustrations, the
number of post-production visual artifacts (e.g., annotations,
stamps, signatures) and the amount of noise (i.e., traces

of document degradation); these abilities may be translated
into document navigation functionalities and implemented in
document readers. The characterization of document layouts
is also valuable to historians, as it supports a quantitative
analysis of the evolution of written communication.

Fig. 21 illustrates the application of SIP to data types
other than documents and tasks other than triage. According
to the SIP concept, the patterns with dSIP values closest
to 0 are the most informative. The top row illustrates the
case of image retrieval from a large set of very similar
samples. The SIP-based automatic extraction of keyframes
from videos facilitates the identification of frameswith poten-
tially high information content. The frame with minimal dSIP
value indeed shows more visual details than other frames,
such as text, cables, and pistons. In the middle row, SIP is
used to determine the most informative point of view of a
three-dimensional object, perhaps by an examining robotic
camera. For a head sculpture this is the three-quarter view,
which integrates anatomical elements of both face and pro-
file in a single shot. The bottom row shows how SIP may
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FIGURE 23. The figure illustrates the impact of two common document noise types on the dSIP values of basic document patterns. — Top row:
Three noise-free documents, with uniform (A), clustered (B), and regular (C) patterns. — Left column: (1) Digital camera noise (obtained by taking
a picture with the camera lens covered, due to which the pattern registered in the digital file is not that of incident light, but rather the results of
electronic, thermal, software, and other similar artifacts; postprocessing consisted in median filtering and binarization). (2) Coffee stain. Both
left-most images are enlarged for clarity. — Center: Pair-wise mixing of signals and noise, with dSIP values indicated. — Right: The arrows show
the direction and magnitude of the change in dSIP due to the addition of noise to the signals.

be used for classifying aerial images of urban settlements
on the uniform–clustered–regular continuum. The impact of
the natural topography and cultural–historical factors on the
hierarchical urban clustering come readily to mind when
contemplating this classification; for example, the meander-
ing water channels of Venice versus the commercial hub of
medieval Strasbourg reflected in a spiderweb road network
versus the plain of Los Angeles making a flat urban grid
affordable.

Fig. 22 showcases the usefulness of the SIP measure to
research in humanities on the history of newspaper layout.
The figure shows selected front pages of the leading Swiss
newspaperNeue Zürcher Zeitung, first published in 1780. The
principal transformation of the layout concerns the increase
in visual and semantic hierarchical structuring through textual
elements, the addition of pictures, and greater use of empty
space. Some of the evolutionary factors are clearly techno-
logical, such as the invention of photography, while others
are societal. For example, the accelerating rhythm of modern
living encourages the development of visual communica-
tion methods that facilitate faster navigation of information,
prompting the shift from homogeneous to hierarchically clus-
tered layouts. SIP provides a means to quantify and compare

FIGURE 24. Detail of binary white noise signal (left), and the averaged
histogram of the lengths of consecutive samples with identical
values (runs) obtained from 100 such signals (right).

changes bothwithin a single newspaper and between different
publications.

Moving beyond documents, the classification into com-
pact, clustered, and homogeneous distributions is of direct
interest to materials science. In telecommunications, the spa-
tial or temporal distance between three senders/receivers—a
basic configuration of networks that recalls our investigation
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FIGURE 25. The above diagram illustrates how downscaling raster images
affects their dSIP according to their pattern type. The images displayed
are those with the highest and two lowest heights.

of triangles in the preceding section—affects data transmis-
sion quality and the propagation patterns of messages. This
‘‘layout’’ phenomenon is fundamentally similar in other types
of networks, such as transportation, social, or epidemic. Sym-
metry plays a great role in physics (for example, for the
growth of crystals); however, irregular configurations (min-
imally redundant) may be equally interesting to study. As for
a table with minimally redundant edge lengths, to take an

example from psychology, this is a recipe for emotional stress
for a party of three sitting at its respective corners.

D. DECISION-MAKING
After having encountered a great variety of applications of
structural information potential throughout the article, let us
here briefly systematize how this concept might be the basis
of ‘‘rapid decision-making for critical matters under condi-
tions of uncertainty and with limited resources’’, as stated
above in the introduction.

The structural information potential enables decisions to
be made through the classification of patterns in the uniform–
clustered–regular space, which relates to their degree of infor-
mativeness. What the users may do with this information is,
however, largely task-specific, as suggested by the diversity
of applications and contexts encountered in this article.

SIP-based decision-making may be rapid, first of all, from
the semantic point of view, since the patterns are ordered by
level of informativeness, which is desirable for the triage task.
The SIP approach is also rapid from a technical perspective;
this is because its implementation and use require limited
resources, and further avoids expensive data preprocessing
and other frequently unreliable types of processing, such as
document recognition. Finally, SIP is rapid because it may
be used to automatically select data with specific levels of
informativeness or pattern types.

Structural information potential is a quantitative and visual
tool for exploratory data analysis, i.e. situations in which the
data content and task specification are uncertain. For such
cases, there is no single preexisting quantitative decision-
making formula that can be applied; serendipity needs to be
acknowledged and actively sought, and insights emerge from
the subjective interaction between humans and data. Within
its limits, SIP enables users to act efficiently in an uncertain
environment.

V. DISCUSSION
This section provides an in-depth discussion of some impor-
tant rationales and implications of the SIP measurement.
It thus helps better understand the behavior of this instrument,
and opens directions for future research.

A. NOISE
How the addition of noise to a pattern affects its structural
information potential depends on a number of factors, primar-
ily the type, extent, and location of the noise, as well as the
pattern type of the signal. Fig. 23 illustrates the interaction
between two types of noise common in documents and the
three basic patterns: uniform, clustered, and regular. Imaging
artifacts, such as camera noise (depicted here), may intro-
duce quasi-uniform, quasi-random noise that extends over
the entire document and has high spatial frequency. This
noise type invariably increases the regularity of the pattern
and its dSIP value. Stains and blotches have limited extent
and lower spatial frequency, such that their impact is largely
determined by their location: they may make a clustered
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FIGURE 26. Original page order and document structure visualization — Reading order: left to right, top to bottom. The color-coded ribbon indicates the
pattern type of each page according to its structural information potential. Observable is a stretch extending to a third of the document made from
mixed uniform, clustered, and homogeneous page patterns, followed by a sequence where homogeneous pages predominate, and ending with several
clustered pages. These visual patterns correspond to semantic patterns with different granularity levels: many short agenda items and full-page
advertisements, text-based stories interspread with cartoons, and a critique section on multiple topics. The cover is a typical example of a clustered
pattern, due to objects of different sizes, and a perspectival view.

pattern appear even more clustered and a uniform pattern
more compact. When appearing in conjunction with a regular
pattern, however, they invariably increase the clusteredness
of the pattern irrespective of location. As a practical take-
away message, understanding the interaction between noise
and signals aids in interpreting SIP values and selecting
data.

B. RANDOMNESS
The attentive reader may have noticed that random patterns
have remarkably high dSIP values. Fig. 6, for instance, shows
an example where dSIP is practically maximal (0.99). Given
the expectation that a regular pattern has maximal value (1),
how is this phenomenon possible, and what does it mean for
the theory and practice of SIP?
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FIGURE 27. Page order by ratio of ink pixels and page area.

An infinite signal with uniform random binary amplitude
values and uncorrelated samples (white noise) has an equal
amount of each possible ‘‘run length’’, i.e. consecutive sam-
ples with identical value. However, a finite signal exhibits
a different number of runs of equal length. Specifically, the
distribution is defined as:

Ri ≈ N/2i ,
k∑
i=1

Ri = N , (13)

where R is the number of runs of length i, N is the signal
length, and k is themaximum run length (Fig. 24). Thismeans
that, theoretically, half of all two consecutive samples — a
substantial share— have alternating values, just as in the case
of a regular pattern: 0, 1, 0, 1, 0, 1, . . .. Moreover, a finite
signal has a maximal run length, which is quite small; e.g.,
18 for 1000 samples, and 27 for 220 samples. Consequently,
the extent of uniform sequences is very limited in respect
to the signal length, further increasing the homogeneity and

redundancy of the pattern. This phenomenon is the underly-
ing reason for random patterns having dSIP values very close
to those of regular patterns.

C. SIZE
It is an inherent aspect of quantization that modifying the
resolution of raster images affects the shape of the pixel struc-
tures in the images; in other words, unlike vector graphics,
shapes in bitmap graphics are not scale-invariant. Therefore,
their SIP will also change with scale. The nature of this
change depends on the pattern type: downscaling increases
the homogeneity of homogeneous patterns (dSIP > 0), has
a relatively low impact on clustered patterns (dSIP ≈ 0),
and increases the uniformity of uniform patterns (dSIP < 0;
Fig. 25). These changes are the most pronounced at small
image resolutions, i.e. those below about 200 pixels. When
image downsampling is performed for performance reasons,
it is preferable to use images with height or width beyond the
said threshold.
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FIGURE 28. Page order by approximate entropy.

D. LIMITATIONS
Two patterns generate aberrant SIP values. These are, how-
ever, peculiar enough to not be of concern in most practi-
cal cases. The first is the perfectly regular structure of the
checkerboard and stripes when aligned with the orthogonal
image raster. At half-cycles of one and two pixels, their
frequency spectra are impulses, hence the entropy has value
zero rather than the expected value one. The second prob-
lematic pattern is a single square aligned with the image
raster; due to the step function of the function having the sinc
function sinc(a) = sin(aπ)/(aπ ) as frequency domain pair
[177, pp. 212–215], its harmonics increase entropy to nearly
one, contrary to what would be expected from a pattern with
a large uniform surface.

E. BINARIZATION
It may be useful to develop a SIP measurement without
binarization. One reason is that it would remove a certain
degree of uncontrollable data distortion inherent in the strong

reduction of its dynamic range. Another reason is that it
would facilitate the application of the SIP method to sig-
nals, for which binarization constitutes a drastic distortion.
However, developing a method for data with large dynamic
ranges creates the need for a second method for binary data
(a common data type in many application domains, including
document processing). Here we can observe an advantage of
the binarization step, which enables both intensity and binary
data to be handled with a single method.

F. METAMERISM
Because of dimensionality reduction (from two dimensions
to a scalar in the case of images), many different patters will
have an identical measured value (the metamerism effect).
This is one reason why triage is a good application for the
SIP method presented here, namely because it is tolerant to
imprecision. One can imagine incorporating parameters into
the SIP method to allow the description of various pattern
features (for example, pixel density).
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FIGURE 29. Page order by spectral entropy.

G. PSYCHOPYSICS
As the pattern ordering resulting from the SIP is primarily
intended to have humans as end users, it is desirable to
investigate the relevance of modifying the method to account
for human pattern perception. Configurations are, however,
difficult psychophysical research stimuli; this is more so
the case for real data, such as documents, where semantics,
aesthetics, and user experience (among many other factors)
play an important role in their evaluation.

H. PHASE
The reader may have noticed that the SIP measurement
method disregards the phase information arising from the
image transform from the spatial to the frequency domain.
This may be inconsequential for speech, where information is
largely carried by the frequency spectrum [180], [197], [198,
pp. 355–358]; however, phase is critical for image processing,

in that radically different patterns result from identical fre-
quency spectra with different phases, while edge location
and strength are moreover strongly phase-dependent [180],
[199]–[202, pp. 355–358]. This difference may explain to
some extent why the spectral methods discussed in the related
work section are successful in audio processing but less com-
monly used for image classification. From a practical point of
view, however, the examples presented in this article demon-
strate the robustness of the method when phase is discarded.
This surprising fact demands a theoretical explanation.

As a first remark, it has been experimentally demonstrated
that some binary image types may be reconstructed from
frequency magnitude only and zero or random phase, and
that this may further depend on the presence or absence of
a single pixel [203]. While this phenomenon has yet to be
elucidated, it constitutes evidence in favor of magnitude-
only image analysis. Second, the extrema of the uniform–
clustered–regular pattern space are phase-independent
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FIGURE 30. Page order by spectral flatness.

[177, pp. 74–81, 106–107], which reduces the problem to one
of explaining why clustered patterns occur around the center
of the pattern space. We may recall that fractals (the patterns
that maximize clustering) depend in their overall shape on the
exponent of the power distribution of the frequency spectrum
and a random phase. In fact, any clustered image pattern
will exhibit some degree of power magnitude distribution.
Moreover, the multitude of harmonics introduced by bina-
rization create a phase that is increasingly better modelled by
a random distribution. Taken together, these aspects suggest
that within the limits of finite and discrete images, patterns
approach fractality at and in the vicinity of maximal SIP or
minimal spatial redundancy. This may be an important reason
why it is practically possible to robustly order images along
the uniform–clustered–regular pattern space on the basis of
magnitude alone.

I. EPISTEMOLOGY
One fascinating mathematical aspect of minimal structural
redundancy is how one might go about thinking about it;
in other words, its epistemology. Specifically, it is richer to
conceive the problem as the design of fluorescent structures

than their discovery. Asking ‘‘What might the definition of
minimal structural redundancy be?’’, rather than ‘‘Which is
the structure with the least redundancy?’’, explicitly embeds
the possibility of multiple answers into the inquiry process,
as well as contextualizing the problem in respect to the ques-
tioner, the data, and the application. For example, a fluores-
cent graph becomes regular in terms of edge length when
the number of vertices tends to infinity! If this behavior is
not desired, a new definition of minimal redundancy may
be created (for example, stipulating only local fluorescence).
This same experimental conceptualization of mathematical
definitions was followed by Gary Chartrand, Paul Erddős
and Ortrud Oellermann in their article ‘‘How to Define an
Irregular Graph’’: ‘‘In research, the goal is not only to come
up with a definition that seems natural but to arrive at a class
of graphs with interesting, and perhaps even some surprising,
properties.’’ [85, pp. 39].

VI. CONCLUSION
This article has introduced structural information poten-
tial (SIP), a measure of information based on pattern
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FIGURE 31. Page order by structural information potential.

configuration. Its utility was illustrated through a real-life
case study for the task of document image triage. On this task,
SIP performs better than other methods in both mathematical
and perceptual terms.

The main theoretical significance of the work consists
in (a) the development of a formalism that defines the
uniform–clustered–regular pattern-informativeness space,
which organizes fundamental pattern types in a mathemat-
ically and perceptually coherent fashion and relates them
to an information potential, and (b) the development of a
conceptual basis and analytical methods for the identification
of shapes and patterns with minimal structural redundancy.

In practical terms, structural information potential is a
useful classification method for triage-like conditions, char-
acterized by decision-making under conditions of uncertainty
and time pressure, when it becomes efficient to generate
information about content through the analysis of structures.
The generic nature of SIP makes it appropriate for many
other applications, such as image quality assessment (to
detect noisy and erroneously imaged data), predicting OCR

output quality before applying OCR, identifying informative
keyframes in video streams, and as a document navigation
functionality. Given the generic nature of the structural infor-
mation potential, the author believes that applications to fields
as diverse as mathematics, physics, telecommunication, and
psychology may be discovered in the future.
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